

RESULTADOS EXPERIMENTALES 1991-1992

RESULTADOS EXPERIMENTALES 1991-1992

PROARROZ - Resultados Experimentales 1992.

Editada por INTA EEA Concepción del Uruguay. Entre Ríos. Argentina.

Nombres comerciales y marcas de fábrica, se citan tan sólo con carácter de identificación. Su mención no constituye una recomendación de uso ni excluye a otros productos no citados.

Permitida la reproducción de la información incluida en esta publicación citando la fuente.

Edición, corrección y diseño de originales: Graciela Tambascio.

Originales: Impresión Láser S y R. Ameghino 68. C. del Uruguay. Impresión y compaginación: Fernando Bruzera y Angela Christiansen. Impresión tapa: Casa Fornés. Concordia.

Impreso en INTA EEA Concepción del Uruguay.

De esta edición se han impreso 200 ejemplares en agosto de 1992.

CONTENIDO

MEJORAMIENTO GENETICO DE ARROZ	
Ensayos Comparativos de Rendimiento Regionales. Livore, A. B.; Pitter, E. L.; Vinzón, R.; Reggiardo, E.; Artusi, J.A.; Marcó C. ECRR Zona Norte Epoca 1ra. ECRR Zona Centro Epoca 1ra. ECRR Zona Sur Epoca 1ra. ECRR Zona Sur Epoca 2da. ECRR Zona Sur Epoca 2da. ECRR EEA C. del Uruguay Epoca 1ra. ECRR EEA C. del Uruguay Epoca 2da.	7
CALIDAD DEL GRANO DE ARROZ	
Análisis de la calidad del arroz en diferentes épocas de siembra zonas en la provincia de Entre Ríos	17
MANEJO DEL CULTIVO DE ARROZ	
Siembra Directa	23
Ensayos de Fertilización De Battista, J.J.; Regiardo, E.; Artusi, J. A. y Henderson, O. Fertilización con Nitrógeno, Fósforo y Potasio Momento de Aplicación del Nitrógeno	34
Sistematización para el Cultivo de Arroz	42

4 Resultados Experimentales. 1992

Relevamiento del Gorgojo Acuático	46
Villarreal, E. H.; Livore, A. B.	
Relevamiento de Podredumbre del Tallo	49
Villarreal, E. H.; Livore, A. B.	
Control Químico de Malezas en el Cultivo de Arroz (Oryza sativa)	55
Marchesini, E.; Cattaneo, F.	
Ensayo 1	
Ensayo 2	
Ensayo 3	
Ensayo 4	
Ensayo 5	

PROLOGO

Proarroz es un proyecto generado en conjunto por los representantes del sector productivo, industrial, profesional y el INTA

Su objetivo es producir un mejoramiento en la producción de arroz mediante un programa de investigación, experimentación y transferencia de tecnología.

Desde su inicio hasta el presente solo han pasado quince meses y se han realizado actividades en las áreas temáticas de Genética, Ecofisiología, Siembra Directa, Enfermedades y Plagas, Control de Malezas y Capacitación.

Esta suma de voluntades y esfuerzos tienen como corolario la presentación de resultados en esta publicación. Esperamos que esta comunicación promueva el intercambio y la discusión como una contribución al cumplimiento de nuestros objetivos.

Comisión Pro-Mejoramiento del Cultivo de Arroz

MEJORAMIENTO GENETICO DE ARROZ

ENSAYOS COMPARATIVOS DE RENDIMIENTO REGIONALES

Livore, A. B.; Pitter, E. L.; Vinzón, R.; Reggiardo, E.; Artusi, J.A.; Marcó C.

Los Ensayos Comparativos de Rendimiento son una herramienta que utiliza el mejoramiento génetico para evaluar y sobre la base de sus resultados, seleccionar el material que reune las condiciones agronómicas, industriales y culinarias superiores a los cultivares de amplia difusión en el cultivo.

En esta oportunidad se han incluido cultivares elegidos en conjunto por los representantes ténicos de la producción y líneas promisorias provenientes del plan de mejoramiento de la EEA INTA Concepción del Uruguay.

Objetivos

Caracterizar el comportamiento agrofitofenológico de la planta y la calidad industrial y físico química del grano de cultivares y líneas promisorias en diferentes condiciones de ambiente

Materiales y Métodos

Se realizaron siete ECRR distribuídos en cuatro localidades, Concepción del Uruguay, Villa Elisa, Estación Clara, Dpto. Chañar y en dos épocas de siembra. La fecha de siembra y nacimiento de cada ensayo está señalada en el detalle de materiales y métodos de cada ensayo.

Los ensayos incluían 25 competidores entre cultivares y líneas y fueron sembrados en parcelas de 5 x 1,2 m, en hileras a 20 cm de separación a una densidad de 400 pl/m². Dos de las repeticiones fueron fertilizadas con fosfato diamónico a una dosis de 60 kg/ha. El manejo del cultivo fue realizado de acuerdo al resto de la arrocera y se controló malezas con el herbicida apropiado para cada situación.

El diseño utilizado fue el de Bloques al azar con cuatro repeticiones y fue analizado por el análisis de varianza del paquete estadístico SAS.

Las determinaciones y observaciones registradas fueron las siguientes: Fecha de siembra, Fecha de emergencia 50%, Fecha de floración 50%, Recuento de plántulas a los 20 DDE, Altura, Panojas/m², Rendimiento agrícola, Desgrane, Grano entero, Grano total, Porcentaje de amilosa, Temperatura de gelatinización, Enfermedades y Excersión de panoja.

Se cosechó una superficie 3,6 m² y se realizó un muestreo de panojas de 0,25 m². Las muestras para evaluar calidad industrial fueron procesadas en un molinillo experimental OLMIA y el porcentaje de amilosa se determinó según el método simplificado de Juliano (1971).

Resultados

En todos los ensayos la población de plántulas logradas fue relativamente baja debido a problemas de nacimiento. Probablemente la densidad de siembra estimada (400 pl/m²) no alcanzó a compensar la reducción de plántulas sufrida por sequía, cama de siembra inapropiada, etc. No obstante la reducción de plántulas se realizó la determinación de panojas por m² que permitió ajustar en cierta medida los datos reales obtenidos.

ECRR Zona norte 1era Epoca

La fecha de siembra fue el 30/IX/91 observándose el nacimiento del 50% de las plántulas el 26/X/91. El control de malezas se realizó con Quinclorac 650 g/ha luego de baños periódicos para promover germinación.

Los valores de los rendimientos agrícolas muestran que el cultivar El Paso 144 superó al resto de los competidores. Del análisis de la varianza surge que existían diferencias significativas entre participantes. El test de Duncan para diferencias de medias indicó que El Paso 144, Newbonnet, Colombiano, Palmar PA y la línea H205-82a no eran estadísticamente diferentes (P<0,05). Cuadro 1.

Cuadro 1. ECRR Zona Norte Epoca 1ra.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	540	7158 a	235	66400	68550
NEW BONNET	463	6934 ab	218	69100	70850
EL PASO 144b	578	6308 abc	223	66250	69450
COLOMBIANO	525	6214 abcd	173	66400	69250
PALMAR P.A.	514	6159 abcde	155	68550	69800
H 205a 82a	578	6026 abcde	154	68050	68950
IRGA 414	561	5642 abcdef	248	65700	68500
SAN MIGUEL	384	5408 bcdefg	134	66300	69900
B 849 T748	367	5325 bcdefg	123	62600	68700
H 167a 20a	621	5277 cdefg	230	64950	66200
LEMONT	521	5218 cdefgh	175	68050	69650
TE BONNET	442	5083 cdefghi	128	66600	71000
B 8541 T779	439	4991 cdefghij	215	65600	68350
B 8541 T10 94	419	4787 cdefghijk	154	66100	70300
TEXAS 06	530	4579 defghijk	198	57050	69000
EL PASO 369	351	4484 efghijk	104	67050	70800
H 216a 59a	502	4005 fghijk	218	65250	69350
B 849 T37	467	3886 ghijk	130	56050	69450
B 8511 T90	529	3572 hijkl	233	69050	71050
B 849 T1712	476	3433 ijkl	138	57200	68650
H 167a 1a	471	3427 ijkl	123	66600	67900
H 167a 85a	599	3334 jkl	115	67600	68850
H 167a 22a 2a	552	3264 kl	203	66800	67500
H 167a 24a	587	2147 1	158	65700	67450
H 167a 48a	545	2073 1	203	64750	65600

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P< 0,05).

El cultivar San Miguel INTA se ubicó en el octavo lugar siendo la línea B8541 T779 la de mejor rendimiento entre los materiales con grano aromático.

En cuanto al porcentaje de grano total los valores oscilaron entre el 65,6 y 71,05 concentrándose la mayoría en los valores cercanos al 68,5%. Los tres valores más altos correspondieron a la línea aromática B8511 T90, al Tebonnet y al Newbonnet en ese orden. Sin embargo para la variable porcentaje de grano entero solo la línea B8511 T90 y el Newbonnet conservan los valores más altos.

El coeficiente de variación de este ensayo fue de 20,9 % provocando una baja de sensibilidad para la detección de diferencias significativas.

ECRR Zona Norte 2da Epoca

La fecha de siembra fue el 24/X/91 con una emergencia del 50% de las plántulas el 18/XI/91.

La variable rendimiento agrícola mostró diferencias estadísticamente significativas (P<0,05) entre participantes destacándose en un primer grupo El Paso 144, Colombiano, El Paso 144b y la línea H205-82a. A continuación se encuentra el Newbonnet y en el medio de la tabla el San Miguel INTA, Cuadro 2. La línea arómatica B8541 T779 sufrió una baja en rendimiento agrícola y de grano entero probablemente debido a ataque de pájaros y a su precocidad, respectivamente.

Cuadro 2. ECRR Zona Norte Epoca 2da.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	635	7854 a	181	67025	69025
COLOMBIANO	594	7655 ab	182	67150	69100
EL PASO 144b	554	6766 abc	150	65867	69300
H 205a 82a	535	6747 abc	146	68425	69400
NEW BONNET	457	6617 bc	161	69625	71850
IRGA 414	605	6122 cd	134	65275	68425
H 167a 22a 2	535	5331 de	189	66450	67550
H 216a 59a	471	5277 def	171	60000	68800
H 167a 85a	575	5246 def	169	66950	68475
PALMAR P.A.	518	5206 def	173	65150	68650
SAN MIGUEL	427	5084 defg	117	64925	70425
LEMONT	419	4717 efg	130	65975	70775
TEXAS 06	553	4701 efg	145	56850	70100
H 167a 48a	603	4671 efg	186	64475	66000
H 167a 24a	550	4615 efg	142	65375	66900
B 8511 T90	450	4569 efg	207	68550	71825
B 8541 T10 9	432	4520 efg	90	61175	70575
H 167a 20a	578	4485 efg	173	63700	66075
TE BONNET	476	4388 efgh	208	62750	71150
H 167a 1a	535	4367 efgh	140	66500	68375
EL PASO 369	466	4341 efgh	107	63250	70600
B 8541 T779	598	4094 efgh	233	59125	68125
B 849 T37	618	3963 fgh	142	55675	69725
B 849 T1712	656	3800 gh	187	48150	69500
B 849 T748	566	3204 h	147	46800	69575

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P< 0,05).

Los porcentajes de grano total fueron más altos que en la primera época, en la mayoría de los participantes. En cuanto al procentaje de grano entero se redujeron excepto en Newbonnet y la línea H205-82a.

El coeficiente de variación de este ensayo fue de 14,98% permitiendo una mayor sensibilidad para detectar diferencias significativas entre medias. Se puede observar en el Cuadro 2 que los 6 primeros competidores se destacan significativamente del resto con un rango menor entre ellos que en la primera época.

ECCR Zona Centro 1era Epoca

La fecha de siembra fue el 27/IX/91 y la fecha de nacimiento del 50% de las plántulas fue el 18/X/91. Las repeticiones III y IV no fueron consideradas para el análisis pues sufrieron falta de agua en la mayoría del período de cultivo. En general se detectó problemas de riego y malezas en todo el ensayo lo cual se refleja en la depresión general de los valores de rendimiento agrícola y el número de plántulas establecidas. Cuadro 3.

Cuadro 3. ECRR Zona Centro Epoca 1ra.

Cultivar	Panojas m²	Rendimiento kg/ha	Plantulas m ²	% Grano Entero	% Grano Total
COLOMBIANO	544	5850 a	158	65350	68800
H 167a 24a	530	5748 ab	91	64400	66250
EL PASO 144	494	5531 abc	120	65650	68250
H 216a 59a	482	5514 abc	141	61250	66600
NEW BONNET	444	5447 abcd	123	68950	70300
LEMONT	390	5169 abcde	131	67500	70450
H 167a 85a	626	5101 abcde	118	65800	67650
H 167a 48a	574	4792 abcdef	109	63150	65400
H 205a 82a	578	4602 abcdefg	96	66050	67700
TEXAS 06	406	4499 abcdefg	126	61500	68700
EL PASO 144b	448	4438 abcdefg	105	64050	69000
H 167a 20a	428	4437 abcdefg	121	61950	64900
EL PASO 369	306	4384 abcdefg	52	64650	69750
H 167a 1a	432	4376 abcdefg	97	64150	66300
TE BONNET	382	4373 abcdefg	101	67450	70250
H 167a 22a 2	566	4330 abcdefg	126	64600	66200
B 849 T1712	398	4223 bcdefg	94	59650	68550
B 8541 T779	440	4205 bcdefg	112	61400	66800
PALMAR P.A.	464	4178 bcdefg	78	64850	69350
B 8541 T10 9	448	4040 cdefg	77	63550	68350
SAN MIGUEL	436	3996 cdefg	75	67150	69450
B 849 T748	342	3865 defg	93	59050	68900
IRGA 414	412	3806 efg	122	64350	67200
B 8511 T90	452	3272 fg	116	68050	70300
B 849 T37	422	3160 g	57	61800	69200

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P<0,05).

Si bien se encontraron diferencias significativas entre participantes se puede observar que los rangos son de una gran amplitud abarcando un alto número de medias. Entre las primeras cinco medias se encuentran el Colombiano, El Paso 144 y el Newbonnet que coincidentemente tenían los promedios de plántulas más altos. Es razonable pensar que parte del comportamiento de los participantes ha sido enmascarado por un reducido número de plantas logradas.

Sin embargo bajo estas condiciones fue posible detectar la capacidad de macollaje y logro de tallos fértiles al comparar las variables número de plántulas con número de panojas y rendimiento agrícola. De este análisis se destaca la línea H205-82a que parte con 96 pl/m² y finaliza con 578 pan/m² y un rendiento que la ubica en el tercio superior de la tabla.

De las líneas aromáticas la B8541 T779 mantiene su ubicación relativa superando al resto.

Los valores de porcentaje de grano total y entero son similares a los obtenidos en la primera época Zona Norte destacándose el Newbonnet, Lemont y Tebonnet.

El coeficiente de variación fue de 14,4%.

ECRR Zona Sur 1era Epoca

La fecha de siembra fue el 26/IX/91 y el nacimiento del 50% de las plántulas fue el 18/X/91. En este ensayo se logró promedios de número de plantas mas altos que contribuyeron a rendimientos máximos superiores al resto de los ensayos. Las líneas y cultivares semienanos y precoces sufrieron daños por ataque de patos afectando seriamente sus rendimientos.

El test de Duncan para diferencias de medias de la variable rendimiento agrícola destacó a El Paso 144, Colombiano, las líneas H167-85a, H167-48a y H205-82a. Cuadro 4.

Cuadro 4. ECRR Zona Sur Epoca 1ra.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	470	8782 a	204	65350	68575
COLOMBIANO	499	8432 ab	199	66150	68525
H 167a 85a	558	7382 abc	234	66350	-68600
H 167a 48a	629	7264 abc	348	64675	66850
H 205a 82a	597	7260 abc	238	63233	68733
EL PASO 144b	535	7196 abc	245	66525	69450
H 167a 1a	472	6861 bcd	150	63025	67475
H 167a 22a 2	697	6791 bcd	192	65800	67750
NEW BONNET	429	6774 bcd	223	69425	71050
SAN MIGUEL	470	6724 bcd	171	67225	69850
H 167a 24a	668	6545 bcde	160	64475	66975
PALMAR P.A.	478	6473 bcde	140	66075	68650
H 216a 59a	539	6429 cde	248	63325	67625
H 167a 20a	548	6186 cde +	292	63350	66350
IRGA 414	510	6161 cde	199	67225	68350
B 8541 T779°	407	5002 def	208	66750	68550
B 8541 T10 9	441	4748 efg	138	64675	68875
LEMONT	441	3780 fgh	171	68433	70333
TE BONNET	394	3734 fgh	132	68125	70575
EL PASO 369	434	3519 fghi	104	66350	70475
B 8511 T90	510	3396 fghi	233	69625	71400
TEXAS 06	611	3060 ghij	194	68300	70350
B 849 T37	502	2366 hij	160	61375	69450
B 849 T748	471	1740 ij	159	53400	69675
B 849 T1712	453	1440 j	213	60767	69067

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P<0,05).

Los cultivares Newbonnet y San Miguel INTA se ubicaron en el medio de la tabla superando a los de su mismo arquetipo de planta Tebonnet, El Paso 369 y otras líneas.

Los porcentajes de grano total y entero alcanzaron valores de hasta 71,4% y 69,6%, respectivamente para la línea aromática B8511 T90 y de 71,05% y 69,4% para el Newbonnet.

La mejor línea arómatica ubicada fue la B8541 T779 con buenos porcentajes de grano entero y total.

El coeficiente de variación de este ensayo fue de 20,4 %.

ECRR Zona Sur 2da Epoca

La fecha de siembra fue el 7/XI/91 y el 50% de plántulas nacidas fue logrado el 7/XII/91. El bajo número de plantas logradas se ve reflejado en los deprimidos valores de los rendimientos agrícolas de la mayoría de los participantes. Cuadro 5.

Coincidentemente con el ensayo de la Zona Centro se observan las diferencias entre participantes en cuanto a la capacidad de macollaje y de lograr tallos fértiles. El Paso 144 e IRGA 414 se ubican en el tope de los promedios junto con el Colombiano. El Newbonnet no se diferencia significativamente de este grupo probablemente por el alto coeficiente de variación de este ensayo (24,2%). La línea H205-82a supera al cultivar San Miguel INTA debido a su mayor capacidad de producción de tallos fértiles. Lamentablemente esta línea presentó granos inmaduros en el análisis de rendimiento industrial, indicando una limitante de ciclo para la segunda época en la Zona Sur.

Los porcentajes de grano Total y Entero mostraron al cultivar Tebonnet, la línea B8511 T90 y al Newbonnet como los mejores.

Cuadro 5. ECRR Zona Sur Epoca 2da.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	595	6443 a	40	63600	69550
IRGA 414	536	6246 ab	62	66725	69325
COLOMBIANO	605	5785 abc	53	64950	69100
EL PASO 144b	562	5656 abcd	62	60550	69550
TEXAS 06	573	5442 absde	74	65200	70000
NEW BONNET	382	4881 abcdef	48	66850	71050
H 216a 59a	551	4793 abcdef	57	63325	68800
B 849 T37	349	4709 bcdefg	42	65250	69900
H 167a 85a	521	4670 bcdefg	53	63450	69225
B 849 T1712	459	4646 bcdefg	66	64850	69200
H 205a 82a	596	4589 bcdefg	56	66500	69150
H 167a 20a	634	4335 cdefgh	56	62325	66400
PALMAR P.A.	516	4245 cdefgh	41	67025	69600
LEMONT	415	4080 cdefghi	56	62500	71050
EL PASO 369	438	4027 defghi	18	61700	69700
SAN MIGUEL	470	3919 defghi	54	47300	68800
H 167a 22a 2	512	3787 efghi	61	66250	68650
B 8541 T10 9	475	3701 efghi	50	66100	70225
B 8541 T779	472	3156 fghij	46	56375	68650
TE BONNET	395	3026 ghij	32	69250	71850
B 849 T748	393	2801 hijk	45	60950	70275
B 8511 T90	503	2427 ijk	66	64875	71300
H 167a 1a	556	2408 ijk	54	62975	66500
H 167a 24a	607	1767 jk	25	56350	58400
H 167a 48a	484	1333 k	50	63450	65150

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P<0,05).

ECRR EEA Concepción del Uruguay 1era Epoca

La fecha de siembra fue el 2/X/91 y el nacimiento del 50% de las plántulas se produjo el 30/X/91. El control de malezas se realizó con una aplicación de Arrosolo 8 l/ha. Debido a fuertes precipitaciones y un posterior planchado del suelo se produjeron nacimientos desparejos que resultaron en número de plantas algo bajo. Así mismo los cultivares y líneas semienanas sufrieron ataque de patos provocando la baja de los rendimientos.

Del análisis de la variable rendimiento agrícola surgen como un grupo distintivo del resto de los participantes el cultivar El Paso 144, la línea H205-82a y El Paso 144b.

El Newbonnet y el San Miguel INTA se ubican con menor rendimiento a continuación junto con otras líneas y el cultivar IRGA 414.

Las líneas aromáticas redujeron sus rendimientos no superando los 4000 kg/ha. En especial la línea B8541 T779 comenzó con un muy bajo número de plantas que no fue compensado con el macollaje e impidió la obtención de un rendimiento mayor.

Si bien los valores de porcentaje de grano entero y total fueron en general altos, el cultivar Newbonnet y las líneas H205-82a y B8511 T90 mostraron los registros más altos en ambas variables consideradas en conjunto. Cuadro 6.

El coeficiente de variación de este ensayo fue de 18,3%.

Cuadro 6. ECRR EEA Concepción del Uruguay Epoca 1ra.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	454	6723 a	104	66025	69025
H 205a 82a	406	6453 ab	98	66900	69125
EL PASO 144b	408	6093 abc	121	59650	69650
NEW BONNET	270	5425 bcd	115	67500	71050
H 167a 22a 2	422	5108 cde	115	65575	67875
H 167a 20a	412	4757 def	123	63075	65975
SAN MIGUEL	336	4747 def	73	64800	70275
IRGA 414	345	4692 def	111	64875	69275
H 167a 1a	364	4666 def	122	65300	67675
H 167a 85a	397	4660 def	84	66825	68500
PALMAR P.A.	341	4657 def	73	66925	68975
H 167a 48a	372	4506 def	123	62875	65950
H 167a 24a	456	4487 def	90	64225	66400
H 216a 59a	339	4218 def	120	62475	67925
TE BONNET	274	4211 def	106	63075	70675
B 8541 T10 9	290	3910 ef	80	57575	67850
EL PASO 369	285	3617 gf	69	60950	70500
B 8541 T779	268	3534 gf	87	64750	68625
B 8511 T90	405	3459 gf	120	66150	72100
B 849 T37	206	2609 gh	54	60850	69300
B 849 T748	182	2059 hi	67	51275	69875
LEMONT	252	1969 hi	105	62167	69300
B 849 T1712	219	1959 hi	93	53850	69800
TEXAS 06	217	1195 i	127	53933	69867

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P< 0,05)

ECRR EEA Concepción del Uruguay 2da Epoca

La fecha de siembra fue el 14/XI/91 y el 50% del nacimiento fue observado el 2/XII/91. El número de plantas logrado también fue bajo en este ensayo afectando los niveles de rendimiento final.

Considerando los rendimientos agrícolas se observó a El Paso 144, IRGA 414, El Paso 144b, Palmar PA y la línea H205-82a como las de rendimiento superior.

Las diferencias significativas detectadas indican a El Paso 144 estadísticamente superior a los participantes listados desde el cultivar San Miguel INTA en adelante.

Los porcentajes de grano entero y total indicaron a los cultivares San Miguel INTA y Lemont como los más destacados.

Sin duda esta época de nacimiento resulta demasiado extrema para los cultivares y líneas probados. Cuadro 7.

Cuadro 7. ECRR EEA Concepción del Uruguay Epoca 2da.

Cultivar	Panojas m²	Rendimiento kg/ha	Plántulas m²	% Grano Entero	% Grano Total
EL PASO 144	482	4896 a	134	64000	68500
IRGA 414	288	4415 ab	77	62825	68200
EL PASO 144	430	4100 abc	131	65750	71550
PALMAR P.A.	435	3950 abcd	136	61500	67350
H 205a 82a	310	3944 abcd	102	64933	69200
H 167a 1a	323	3931 abcde	80	59175	66875
H 167a 85a	431	3714 abcdef	82	54725	65525
SAN MIGUEL	302	3667 bcdef	98	68525	71350
NEW BONNET	404	3632 bcdef	141	64175	69725
H 216a 59a	253	3593 bcdef	74	56925	66050
H 167a 22a 2	381	3543 bcdef	63	54075	65425
TEXAS 06	370	3477 bcdef	119	62525	68800
H 167a 48a	384	3455 bcdef	102	59125	65300
EL PASO 369	, 346	3336 bcdef	85	61750	69300
B 8541 T10 9	385	3265 bcdef	81	60500	68725
H 167a 20a	390	3233 bcdef	78	58075	65450
B 849 T748	373	3225 bcdef	83	63125	69400
TE BONNET	303	3104 cdef	86	67325	70525
B 8541 T779	322	3025 cdef	93	57725	66850
B 849 T1712	413	2976 cdef	112	61325	68525
H 167a 24a	409	2775 def	105	63100	65925
B 849 T37	314	2768 def	73	62500	68775
LEMONT	384	2655 ef	105	68425	71375
B 8511 T90	410	2595 f	109	55625	68450

Valores con letras iguales no difieren significativamente según el test de rango múltiple de Duncan (P<0,05).

Conclusiones

A pesar de las restricciones inherentes a la deficiencia en el número de plantas logradas se puede observar que, en la mayoría de los ensayos, existe una alta asociación en su conjunto

en cuanto a los resultados obtenidos.

La consistencia en la ubicación de la mayoría de los cultivares y líneas indicaría que los ensayos aportan una información válida.

De los cultivares analizados se destaca claramente El Paso 144-y Newbonnet, tanto en la variable rendimiento agrícola como en porcentaje de grano entero y total.

Es importante señalar que aunque no se registraron síntomas de ninguna enfermedad, el cultivar Newbonnet es altamente susceptible a podredumbre del tallo lo que representa un alto riesgo de cosecha.

De las líneas promisorias se destaca la línea H205-82a con valores de rendimiento agrícola, porcentaje de grano entero, total y de amilosa (ver capítulo Calidad de grano) superiores a los del cultivar San Miguel INTA. De acuerdo al comportamiento de esta línea en estos ensayos, su mejor adaptación sería en siembras tempranas y en la zona norte. Lamentablemente presenta un ciclo de 110 días a floración creando riesgos de obtener granos inmaduros en siembras cercanas a fin de noviembre.

De las líneas aromáticas se destaca la línea B8541 T779 que mantiene rendimientos cercanos a los 4000 kg/ha.

Estos materiales han sido probados durante dos campañas y deberán continuar su valoración en el siguiente año. El resto de las líneas participantes serán eliminadas incorporándose otras nuevas procedentes de la selección 91/92.

Bibliografía

Juliano, B.O. 1971. A simplified assay for milled rice amylose. Cereal Science Today. Vol. 16. N° 11.

CALIDAD DEL GRANO DE ARROZ

ANALISIS DE LA CALIDAD DEL ARROZ EN DIFERENTES EPOCAS DE SIEMBRA Y ZONAS, EN LA PROVINCIA DE ENTRE RIOS

Pérez, Dolores; Liberman, Claudia

Introducción

La calidad del arroz, como la de cualquier producto alimenticio, generalmente se evalúa de acuerdo a las preferencias y gustos del mercado-destino. Para la determinación de la calidad del grano de arroz se analizan sus propiedades físico-químicas.

El contenido de amilosa se considera la característica más importante para predecir el comportamiento del arroz durante la cocción (Williams et al., 1958; Gómez, 1979), siendo uno de los parámetros a tener en cuenta en la calidad del arroz para exportación.

Las propiedades del grano son específicas de los cultivares en particular, es decir que están relacionadas con factores genéticos, pero también son susceptibles a condiciones externas como ambiente, tipo de suelo, fertilización, etc.

Objetivos

Estudiar el comportamiento de la calidad de diferentes genotipos de arroz cultivados en dos épocas de siembra y en tres zonas de la provincia de Entre Ríos.

Materiales y Métodos

Se realizó la determinación del contenido de amilosa de los 25 participantes del tipo largo fino, de los ensayos comparativos de rendimiento regionales sembrados en la zona norte, centro y sur de la provincia de Entre Ríos, en dos épocas de siembra. Primera época 30,27 y 26 de septiembre de 1991, para las zonas norte, centro y sur, respectivamente. Segunda época 24 de octubre y 7 de noviembre de 1991, para las zonas norte y sur, respectivamente. Se evaluaron dos orígenes diferentes del cultivar El Paso 144.

Los resultados se analizaron estadísticamente mediante un análisis de varianza de submuestras de cada participante, extraídas de dos repeticiones fertilizadas con 100 kg/ha de urea y de dos repeticiones no fertilizadas.

El contenido de amilosa se estimó mediante el método simplificado de Juliano (1971), que es una técnica colorimétrica basada en la reacción yodo-almidón.

El arroz se clasifica según el contenido de amilosa en: glutinoso (1-2% de amilosa), de bajo contenido de amilosa (menos de 23% de amilosa), de contenido intermedio (23-27% de amilosa) y de contenido alto (más de 27% de amilosa).

El arroz de bajo contenido de amilosa se presenta pegajoso, húmedo y con brillo luego de cocido, el de contenido intermedio se presenta seco y suelto quedando de textura suave al enfriarse, y el de alto contenido presenta las características del arroz de amilosa intermedia pero se endurece al enfriarse.

Resultados y Discusión

En el Cuadro 1 se muestran los resultados del contenido de amilosa de cada participante por zona y por época de siembra.

Cuadro 1. Contenido de amilosa de líneas y cultivares de los ECRR (valores promedio).

		Conte	nido de Ami	losa (%)	
Líneas y	No	orte	Centro	S	ur
Cultivares	E. 1ra.	E. 2da.	E. 1ra.	E. 1ra.	E. 2da
San Miguel	26,1	24,2	26,5	24,4	23,9
Lemont	26,1	24,3	26,5	25,4	24,5
El Paso 144	29,6	28,8	30,7	27,3	27,8
Teebonnet	26,7	25,5	28,3	22,9	24,3
El Paso 144b	30,7	28,3	30,7	26,0	27,7
Colombiano	29,2	28,5	30,2	26,9	24,3
Newbonnet	26,3	23,7	26,5	24,3	23,6
Texas 06	25,3	23,5	26,3	23,2	24,1
El Paso 369	26,7	24,2	27,4	25,4	25,1
B849 T37	25,0	23,4	26,0	23,6	24,3
B849 T1217	25,0	22,8	25,2	21,2	24,1
B849 T748	26,3	23,9	26,1	23,2	24,7
B8511 T90	29,0	26,9	27,6	25,8	24,7
B8541 T779	27,4	26,4	27,4	25,8	25,1
H167a 85a	19,9	19,8	19,3	19,1	19,8
H167a 22a 2a	25,2	24,4	25,0	23,6	24,3
H167a 24a	24,3	23,9	28,3	24,7	24,3
H167a 48a	24,0	23,2	24,2	21,0	19,8
H216a 59a	25,9	24,3	27,9	23,4	24,3
H167a 1a	20,6	20,5	23,8	19,9	18,7
H167a 20a	19,4	18,5	20,0	16,0	18,7
H205a 82a	25,0	24,2	27,4	22,5	23,4
B8541 T1094	25,3	23,7	28,3	23,0	22,7
Palmar P.A.	18,3	17,1	18,4	16,2	17,8
IRGA 414	28,5	28,5	32,0	26,7	26,0

Los resultados del análisis de varianza de la 1ra. época de siembra para las tres zonas indicaron diferencias significativas (P<0,01) entre participantes, entre zonas y en la interac-

ción líneas y cultivar por zona, mostrando algunos participantes un comportamiento diferencial de acuerdo al lugar donde se los cultivó. De los 25 participantes analizados por zona, 15 fueron clasificados de contenido intermedio de amilosa para la zona norte, 10 para la zona centro y 16 para la zona sur, lo que estaría indicando cambios de rango de algunos participantes al ser sembrados en otra zona.

A pesar de la interacción significativa de cultivar por zona, se encontró un primer grupo con el 44% de los participantes que se mantuvieron dentro del mismo rango en las tres zonas (Cuadro 2). El contenido de amilosa de la zona centro presentó una tendencia a ser mayor con respecto a la zona norte, no siendo superiores las diferencias a 1,1 punto en el porcentaje de sus valores. Solo las líneas B849 T148, H167a 85a y H167a 22a2a presentaron un contenido de amilosa mayor en la zona norte.

En la zona sur el contenido de amilosa de los participantes disminuyó con respecto a las otras dos zonas; siendo la línea H167a 85a la que se comportó en forma más estable en las tres zonas (19,9%, 19,3% y 19,1%).

Cuadro 2. Contenido de amilosa de líneas y cultivares en las tres zonas (valores promedio).

Líneas v	Co	ontenido de amilosa (º	%)
Líneas y Cultivares	Norte	Centro	Sur
San Miguel Lemont El Paso 144 Newbonnet Texas 06 B849 T37 B849 T748 H 167a 85a H 167a 22a 2a H 167a 20a Palmar P.A.	26,1 26,1 29,6 26,3 25,3 25,0 26,3 19,9 25,2 19,4 18,3	26,5 26,5 30,7 26,5 26,5 26,0 26,1 19,3 25,0 20,0 18,4	24,4 25,4 27,3 24,3 23,2 23,6 23,2 19,1 23,6 16,0 16,2

Un segundo grupo con el 28% de los participantes se encontraron dentro del mismo rango en las zonas norte y centro, pero disminuyeron su contenido de amilosa en la zona sur, cambiando de rango (Cuadro 3). El rango de contenido de amilosa en las zonas norte y centro fue igual en algunos cultivares y en otros aumentó hasta 3,5 puntos, exceptuando la línea aromática B8511 T90, que presentó un valor de amilosa más bajo en la zona centro sin cambiar de rango de clasificación con respecto a la zona norte.

Cuadro 3. Contenido de amilosa de líneas y cultivares en las tres zonas (valores promedio).

	Co	ontenido de amilosa (%)
Líneas y Cultivares	Norte	Centro	Sur
El Paso 144b Colombiano B849 T1217 B8511 T90 B8541 T779 H 167a 48a IRGA 414	30,7 29,2 25,0 29,0 27,4 24,0 28,5	30,7 30,2 25,2 27,6 27,4 24,2 32,0	26,0 26,9 21,2 25,8 25,8 21,0 26,7

Un tercer grupo con el 20% de los participantes presentó un aumento en el contenido de amilosa en la zona centro, pasando a un rango superior con respecto a las otras dos zonas (Cuadro 4). El contenido de amilosa de la zona norte y sur se mantuvo en el mismo rango para todas las líneas ensayadas, observándose a pesar de esto, que las diferencias en niveles de amilosa entre las zonas centro y norte fueron menores que entre las zonas centro y sur.

Cuadro 4. Contenido de amilosa de líneas y cultivares en las tres zonas (valores promedio).

	Contenido de amilosa (%)		
Líneas y Cultivares	Norte	Centro	Sur
El Paso 369	26,7	27,4 28,3	25,4
H 167a 24a H 216a 59a	24,3	28,3	24,7
H 167a 1a	26,7 24,3 25,9 20,6 25,3	27,9 23,8 28,3	25,4 24,7 23,4 19,9 23,0
B8541 T1094	25,3	28,3	23,0

El contenido de amilosa del cuarto grupo, con el 8% de los participantes, se encontró dentro de un rango diferente en cada zona (Cuadro 5), siendo las diferencias de porcentaje de amilosa entre las zonas centro y sur mayores que norte y sur. Estos resultados que indicaron un cambio de calidad en la línea H205a 82a y en el cultivar Teebonnet fueron corroborados con el test de cocción donde en ambos casos el arroz cocido de la zona centro se endurecía al enfriarse, el de la zona norte quedaba de textura suave al enfriarse y el de la zona sur quedaba más blando después de cocido.

Cuadro 5. Contenido de amilosa de líneas y cultivares en las tres zonas (valores promedio).

	Contenido de amilosa (%)		
Líneas y Cultivares	Norte	Centro	Sur
Teebonnet	26,7	28,3	22,9
H 205a 82a	25,0	27,4	22,5

En todos los casos se observó una tendencia a disminuir el contenido de amilosa en el sur y aumentar en el centro con cambios de niveles en algunos casos, siendo la media general de 25,4 % para el norte, 26,4% para el centro y 23,2% para el sur.

En el análisis estadístico para la 2da. época de siembra en las zonas norte y sur los resultados indicaron diferencias significativas (P<0,01) entre participantes, entre zonas y en la interacción cultivar por zona, observándose un comportamiento diferencial de los participantes al cambiar la zona.

De los veinticinco participantes evaluados, a pesar de las diferencias significativas (P<0,01) de cultivar por zona, el 80% se encontró dentro del mismo rango en las dos zonas (Cuadro 6), variando su contenido de amilosa entre 0,1 y 2,2 puntos entre zonas, siendo mayor en algunos cultivares y líneas en la zona sur y en otros en la zona norte. Solamente las líneas H167a 85a y H216a 59a dieron contenido de amilosa igual en las dos zonas.

Cuadro 6. Contenido de amilosa de líneas y cultivares en las zonas norte y sur, 2da. época de siembra (valores promedio).

	Contenido de amilosa (%)	
Líneas y		
Cultivares	Norte	Sur
San Miguel	24,2	23,9
Lemont	24,3	24,5
El Paso 144	28,8	27,8
Teebonnet	25,5	24,3
El Paso 144b	28,3	27,7
Newbonnet	23,7	23,6
Texas 06	23,5	24,1
El Paso 369	24,2	25,1
B849 T37	23,4	24,3
B849 T748	23,9	24,7
B8511 T90	26,9	24,7
B8541 T779	26,4	25,1
H167a 85a	19,8	19,8
H167a 22a 2a	24,4	24,3
H167a 24a	23,9	24,3
H216a 59a	24,3	24,3
H167a 1a	20,5	18,7
H167a 20a	18,5	18,7
H205a 82a	24,2	23,4
Palmar P.A.	17,1	17,8

En el Cuadro 7 se muestran las líneas y cultivares que variaron de rango de clasificación al cambiar de zona. Todos los participantes presentaron una tendencia a bajar su contenido de amilosa en la zona sur, excepto la línea B849 T1217 que lo aumentó.

Cuadro 7. Contenido de amilosa de líneas y cultivares en las zonas norte y sur, 2da. época de siembra (valores promedio).

	Contenido de amilosa (%)	
Líneas y Cultivares	Norte	Sur
Colombiano	28,5	24,3
B849 T1217	22,8	24,1
H167a 48a	23,2	17,8
B8541 T1094	23,7	22,7
IRGA 414	28,5	26,0

El análisis estadístico del contenido de amilosa de los cultivares y líneas respecto a las dos épocas de siembra para las zonas norte y sur mostró diferencias significativas (P<0,01) en la interacción cultivar por época de siembra para las dos zonas.

En la zona norte se observó una tendencia a disminuir el contenido de amilosa en la 2da. época de siembra entre 0,1 a 2,6 puntos, excepto el cultivar IRGA 414 que fue igual en las dos épocas. La mayoría se mantuvieron dentro del mismo rango de clasificación a diferencia de las líneas B849 T1217, B8511 T90 y B8541 T779 que disminuyeron su contenido de amilosa cambiando de rango (Ver Cuadro 1).

En la zona sur los cultivares y líneas presentaron un comportamiento diferencial, aumentando algunos participantes su contenido de amilosa en la 1ra. época y otros en la 2da.; siendo los cultivares Teebonnet y El Paso 144b y las líneas B849 T1217, H205a 85a y B8541 T1094 los que cambiaron de rango de clasificación (Ver Cuadro 1).

De acuerdo a estos resultados preliminares se observó un comportamiento diferencial de las líneas y cultivares dependiendo de la zona de cultivo y época de siembra, siendo algunos cultivares y líneas más estables que otros.

De los participantes ensayados se podría decir que los genotipos que mantuvieron su calidad en las tres zonas y las diferentes épocas de siembra fueron los cultivares: San Miguel, Lemont, El Paso 144, Newbonnet, Texas 06 y Palmar P.A. y las líneas: B849 T37, B849 T748, H167a 85a, H167a 22a 2a y H167a 20a.

Existen antecedentes que hacen referencia a la variación del contenido de amilosa según el tipo de suelo, fertilización (con mayor fertilización nitrogenada el contenido de amilosa decrecería sin importar el momento de aplicación) y temperatura durante el desarrollo del grano (a mayor temperatura disminuiría el contenido de amilosa) (Paule, 1977; Resurrección, 1978; De la Cruz, 1988 y Juliano, 1970).

Los lotes en donde se realizaron los ensayos presentaron un manejo diferente en lo que se refiere al tipo de rotación, ésto pudo influir en el nivel de fertilidad de cada uno de los experimentos.

Se considera necesario continuar los trabajos en este tema, puesto que pueden ser varios los factores que hayan interactuado con los genotipos en cada zona y en cada época de siembra, provocando en algunos casos cambios en su calidad.

Es importante orientar la selección a aquellas líneas y cultivares que se mantuvieron estables en las diferentes circunstancias.

Se sugiere como línea de trabajo, estudiar la asociación entre fertilidad del suelo y contenido de amilosa lo que permitiría realizar una mejor comparación entre el material a seleccionar en los programas de mejoramiento.

Bibliografía

- De La Cruz, N.; Kumar, I.; Rajendra, P.K. and Khush, G.S. 1989. Effect of temperature during grain development on stability of cooking quality components in rice. Japan J. Breed. 39:299-306.
- Gómez, K.A. 1979. Effect of environment on protein and amylose content of rice. In: Proceeding of the Workshop on chemical aspects of rice grain quality. IRRI. Filipinas. pp 59-68.
- Juliano, B.O. 1971. A simplified assay for milled rice amylose. Cereal Science Today. Vol. 16. N° 11.
- Paule, C.M. 1977. Variability in amylose content of rice. IRRI. Los Baños Filipinas.
- Resurrección, A.P.; Hara, T.; Juliano, B.O. and Yoshida, S. 1977. Effect of temperature during ripenning on grain quality of rice. Soil Sci. Plant Nutr. 23:109-112.
- Williams, V.R.; Wu, W.; Tsai, H.Y. and Bates, H.G. 1958. Varietal differences in amylose content of rice starch. J. Agr. Food Chem. 6:47.

MANEJO DEL CULTIVO DE ARROZ

SIEMBRA DIRECTA EN ARROZ

Arguissain, Gustavo G.; Villón, Cesar

Introducción

En nuestro país, el sistema de siembra directa ha sido desarrollado para numerosos cultivos. Para el caso de arroz algunas experiencias fueron realizadas por Huck en 1984 y 1985 con resultados poco alentadores debido al problema de malezas y al costo de su control.

La demanda de una mayor eficiencia en la utilización de maquinarias y de una explotación más racional del recurso suelo, ha creado la necesidad de adaptar este sistema y establecer pautas de manejo para su utilización en la provincia de Entre Ríos.

CULTIVO ANTECESOR - CARACTERISTICAS DE LA COBERTURA

Objetivos

Identificar las características del cultivo antecesor y su correspondencia con el establecimiento del cultivo de arroz. Generar lineamientos de manejo.

Materiales y Métodos

Se realizó una caracterización de la cobertura de 3 lotes cuyos tratamientos fueron los siguientes:

- Lote 1: Ubicación Estancia Jubileo. Pradera de lotus, trébol y rye grass, en donde sólo se efectuó una pasada de niveladora.
- Lote 2: Ubicación Estancia Jubileo. La misma pradera con cultivo mínimo de romme, cultivador de campo y niveladora.
- Lote 3: Ubicación Estancia San Pedro. Pradera ya empobrecida de rye grass, lotus y trébol, en donde se efectuó una pasada de romme y niveladora y se produjo una resiembra natural de rye grass.

En cada lote se demarcó un área de 2500 m² en donde se ubicaron 10 sitios de muestreo y se evaluó:

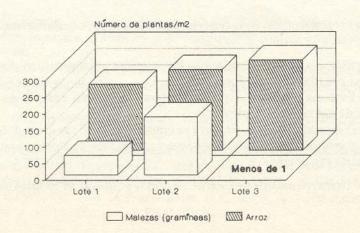
- a) Previo a la aplicación de herbicida.
 - Porcentaje de cobertura (estimación por suelo descubierto).
 - Composición botánica.
 - Altura.
- b) A los 20 días de emergencia del arroz.
 - Número de plantas de arroz.
 - Número de plantas de malezas (gramíneas).

En el lote 3 previo a la aplicación de herbicida (23/10) se realizó en una zona del lote donde la cobertura llegó a 50 cm de altura un corte de la misma a 5 cm del suelo, en tres parcelas de 5 x 20 m, con el propósito de generar un tratamiento bien contrastado para evaluar implantación.

Se debe destacar que en el lote 3 se aplicó un baño en forma inmediata a la siembra.

Resultados

El mejor desarrollo de la cobertura se observó en el lote 3, en donde el rye grass predominó y llegó a florecer al momento de la aplicación de glifosato.


Los porcentajes de cobertura, altura y composición se muestran en el Cuadro 1.

Cuadro 1. Cobertura, altura y composición botánica de los lotes ensayados.

	Lote N° 1	Lote N° 2	Lote N° 3
Cobertura (%)	78	62	60
Altura (cm)	5	6	25
Composición (%)			
Gramíneas	35	21	87
Leguminosas	48	1	2
Viznaguilla	2	67	9
Malezas	15	11	2

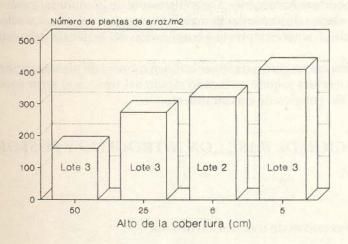

El número de plantas de arroz y número de malezas se muestra en el Gráfico 1.

Gráfico 1. Número de plantas de arroz y malezas de los lotes relevados.

En el Gráfico 2 se puede observar la relación entre la altura del antecesor y el número de plantas de arroz logradas.

Gráfico 2. Número de plantas de arroz según el alto de cobertura.

Discusión

Si bien los resultados entre alto de cobertura y porcentaje de la misma no son los esperados, estos se explican por dos razones, la primera es que en los sitios de mayor cobertura, la proporción de latifoliadas es superior, siendo éstas más eficientes en cubrir el suelo, y la segunda es que el rye grass del lote 3 se encontraba en un avanzado estado fenológico (encañado), por lo que si bien su altura era importante la cantidad de hojas era proporcionalmente reducida. A diferencia de las latifoliadas la disposición de las hojas es erecta, lo que las hace menos eficientes para la cobertura del suelo.

No obstante la mayor eficiencia de las latifoliadas para la cobertura vegetal, es importante mencionar que luego de la aplicación del herbicida (glifosato + 2,4 D), muchas de las leguminosas y la viznaguilla pierden totalmente sus hojas y se disgregan, por lo que la cobertura muerta que dejan es muy reducida. Las gramíneas por el contrario, ofrecen una cobertura muerta más asociada a la cobertura que presentan antes de la aplicación del herbicida.

Con respecto al número de plantas de arroz logradas, en el lote 3 se vió claramente que la mayor altura de la cobertura produjo un menor número de plantas. Por otra parte, la diferencia que surge de comparar el número de plantas de la altura de 5 cm del lote 3 con el número de los lotes 1 y 2 se explica probablemente a que en el lote 3 se bañó con posterioridad a la siembra, lo que le brindó una mejor condición para el nacimiento.

Con respecto al número de plantas de malezas, se observó que en los lotes donde el suelo quedó más removido, la frecuencia de aparición de malezas posterior a la aplicación del herbicida fue mayor, y que el porcentaje de cobertura del antecesor también pudo influir en ello. Es importante continuar investigando cómo actúan estas variables en el comportamiento de la maleza, ya que el control de las mismas es un aspecto relevante en el manejo del arrozal.

De lo observado, los avances en las recomendaciones para el manejo del cultivo antecesor son:

- Mantener el suelo sin mover, realizando las operaciones de nivelación y taipeado durante el verano.
- Obtener una cobertura homogénea preferentemente de gramíneas, y manejar el pastoreo a los efectos de aumentar el macollaje y no permitir el encañado.
- La altura del cultivo antecesor previa a la aplicación del herbicida debe estar entre 15 y 20 cm.
- Se pueden aplicar baños para garantizar un buen número de plantas sin inconvenientes, ya que la cobertura impide un secado rápido del suelo, y el arroz nace más rápidamente y sin peligros de encostramiento.

FERTILIZACION DE BASE CON NITROGENO Y FOSFORO

Objetivos

Determinar la necesidad de fertilización de base.

Materiales y Métodos

Los ensayos fueron conducidos en los lotes 2 y 3 que se mencionaran en el trabajo anterior.

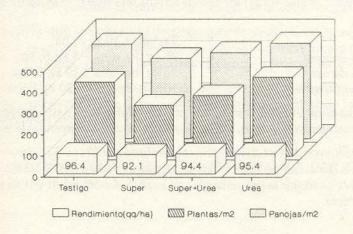
Todos los tratamientos se efectuaron a la siembra consistiendo en:

- 1. Supefosfato 100 kg/ha, junto a la semilla.
- 2. Urea 100 kg/ha en cobertura.
- 3. Tratamientos 1 + 2.
- 4. Testigo sin fertilizar.

El diseño experimental utilizado fue en bloques al azar con tres repeticiones. La aplicación de los fertilizantes con la semilla se realizó mediante la obturación o no de las mangueras de conducción del mismo.

Las variables analizadas fueron: número de plantas de arroz, número de plantas de maleza (gramíneas), avance fenológico del arroz y la maleza a los 20 días de emergencia, número de panojas y rendimiento en grano.

Resultados


Se halló una diferencia significativa (P<0,05) en el número de plantas de arroz en el lote 2, presentando el tratamiento con superfosfato el menor número, diferenciándose del testigo y del tratamiento con urea que fueron los que presentaron los mayores valores. Con respecto al número de malezas no hubo diferencias entre tratamientos, obteniéndose un promedio de 176 plantas/m². Con respecto al avance fenológico, se observó en el tratamiento con superfosfato que las plantas tanto de arroz como de malezas presentaron, con mayor frecuencia, macollos, aunque ésto puede estar asociado a la menor densidad de plantas que se logró en este tratamiento.

El número de panojas al igual que el rendimiento en grano presentaron la misma tendencia que el número de plantas, aunque las diferencias no fueron significativas.

En el Gráfico 3 se muestra el número de plantas de arroz, el número de panojas y el rendimiento en grano.

En la experiencia del lote 3 no se hallaron diferencias significativas entre los tratamientos (P>0,05), presentando un valor promedio de 274 plantas/m². En este lote el nivel de malezas fue muy bajo (<1 planta/m²), por lo que no se hallaron diferencias en el ensayo. El arroz presentó en promedio 3 hojas en todos los tratamientos. El recuento de panojas presentó un valor promedio de 450 por m² con un rendimiento de 8500 kg/ha.

Gráfico 3. Número de plantas, panojas y rendimiento para los tratamientos de fertilización.

Discusión

La disminución en el número de plantas por efecto del superfosfato está ligada a la cantidad de fertilizante agregado, probablemente provocada por toxicidad del fertilizante sobre la germinación de la semilla. Si bien la dosis empleada fue alta, ésta surgió como condición de la maquinaria que se estaba utilizando (dosis mínima que aplicaba 100 kg/ha).

El número de plantas en el lote 3 fue el de una población similar a la testigo, a pesar del fertilizante utilizado. Es probable que el baño aplicado inmediatamente después de la siembra, haya contribuido a disminuir el efecto perjudicial del fertilizante en contacto con la semilla.

En lo que hace a la producción de grano, es indudable que el déficit nutricional no fue tan importante considerando el alto rendimiento de los testigos, lo que explicaría la falta de respuesta a los tratamientos.

El manejo que debe ser considerado para la aplicación de fertilizante con la semilla, es que las dosis a utilizar sean menores a 100 kg/ha, debiendo determinarse aun el nivel crítico de daño, o bien prever la utilización de baños para disminuir el riesgo de toxicidad. El nivel de respuesta es solo preliminar y requiere ser ensayado en un mayor número de casos.

FERTILIZACION CON UREA JUNTO A LA SEMILLA

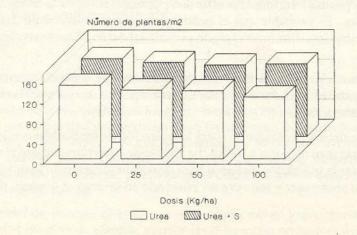
Objetivos

Identificar la cantidad de urea que, utilizada junto con la semilla de arroz, no afecte el número de plantas.

Materiales y Métodos

El ensayo se realizó en el campo experimental de arroz de la EEA INTA C. del Uruguay. Los tratamientos consistieron en colocar junto con la semilla las siguientes dosis de urea y urea + azufre.

1	Testigo	5	Testigo + 10 kg S/ha
2	25 kg/ha de urea	6	25 kg/ha urea + 5 kg S/ha
3	50 kg/ha de urea	7	50 kg/ha urea + 10 kg S/ha
4	100 kg/ha de urea	8	100 kg/ha urea + 20 kg S/ha


El diseño experimental utilizado fue en parcelas divididas con cuatro repeticiones, en donde la urea fue el tratamiento principal, y el agregado de azufre comprendió la subparcela.

Las sub-parcelas fueron de 4 x 1,2 m, con líneas sembradas a 20 cm. El cultivar utilizado fue El Paso 144, con una densidad de 200 kg/ha. La siembra se realizó el 03-03-92. Se aplicó riego por aspersión para producir la germinación. Se evaluó el número de plantas logradas a los 20 días de la siembra.

Resultados

No se hallaron diferencias significativas por efecto de los tratamientos ni por interacción en el número de plantas de arroz. No obstante se observó una tendencia sostenida a disminuir este número a medida que aumentó la dosis de urea, y a elevarse por el agregado de azufre. Los valores de los números de plantas para los diferentes tratamientos se muestran en el Gráfico 4.

Gráfico 4. Número de plantas para los diferentes niveles de urea con la semilla.

Es importante mencionar que en la totalidad de los tratamientos en donde se aplicó urea o urea + azufre, la emergencia de plantas se produjo 3 días antes que en los tratamientos testigos.

Discusión

Si bien las diferencias halladas no resultaron significativas, existen algunos antecedentes en donde la incorporación de fertilizante nitrogenado con la semilla reduce el número de plantas de arroz, así Souza et al. (1991) encuentran disminuciones del orden del 30% en el número de plantas por el agregado de 60 kg de N, utilizando como fuente sulfato de amonio.

La tendencia observada por efecto del azufre puede atribuirse a que el mismo regula la elevación del pH producida como consecuencia de la degradación de la urea.

Es posible que la utilización de riego complementario haya minimizado el efecto de toxicidad de la urea para con la semilla, por lo que resulta aconsejable no utilizar dosis superiores a 50 kg/ha, y prever la aplicación de baños para el nacimiento.

El adelanto que fue observado en la emergencia por efecto de la urea, debe ser comprobado nuevamente, ya que su utilización puede resultar de interés para lograr una implantación más rápida.

PROMOTORES DE GERMINACION Y CULTIVARES

Objetivos

Determinar el efecto del ácido giberélico y fertilizantes para semillas, en la implantación del cultivo de arroz .

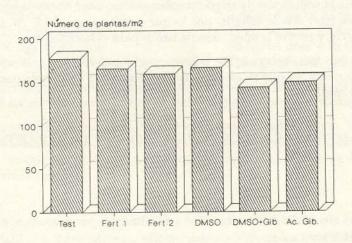
Materiales y Métodos

La experiencia se realizó en la EEA INTA C. del Uruguay. Los tratamientos consistieron en la aplicación de los productos que a continuación se detallan junto con la semilla de 4 cultivares, San Miguel INTA, El Paso 144, Lemont y Palmar INTA.

- a) Acido Giberélico 2 g p.a. c/100 kg de semilla.
- b) Dimetil óxido-sulfuroso (DMSO) solución al 2%.
- c) Fertilizante para semilla (1) 1,3 kg c/100 kg de semilla.
- d) Fertilizante para semilla (2) 1,3 kg c/100 kg de semilla.
- e) Tratamiento a) + b).
- f) Testigo.

El diseño utilizado fue en parcelas divididas con tres repeticiones, siendo el tratamiento principal el cultivar, y el subtratamiento el producto aplicado. La superficie total fue de 540 m^2 y las parcelas tuvieron una dimensión de $3 \times 15 \text{ m}$.

La densidad sembrada fue de 390 semillas viables por m² para San Miguel INTA y El Paso 144, 360 para Lemont y 318 para El Palmar INTA.


La siembra se realizó el 20 de febrero, el 2 de marzo se realizó el primer recuento de plantas, el 6 de marzo se midió altura de planta y peso seco, el 12 de marzo se aplicó un riego suplementario y el 27 de ese mes se efectuó el segundo recuento de plantas.

Resultados

No se halló en ninguno de los análisis efectuados interacción cultivar x tratamiento.

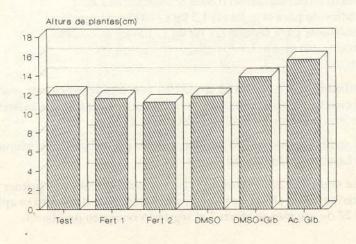
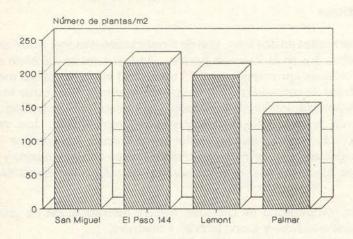

La emergencia comenzó el 26 de febrero, sin observarse nacimientos diferenciales entre los distintos tratamientos. No se hallaron diferencias significativas (P > 0,10) en el número de plantas entre los tratamientos al momento del primer muestreo presentando una media de 188 plantas/ m^2 . Al momento del segundo muestreo el tratamiento testigo presentó el mayor número de plantas (P < 0,10) por unidad de área, no diferenciándose de los tratamientos b, c; y d, y sí en cambio con los tratamientos a y e que contenían ácido giberélico. El número de plantas para los diferentes tratamientos se muestran en el Gráfico 5.

Gráfico 5. Número de plantas para los diferentes tratamientos de semillas.

Con respecto a la altura medida a los 9 días de emergencia, el tratamiento con ácido giberélico (a) presentó la mayor, diferenciándose de la tratada con DMSO + ac. giberélico (e), y ésta a su vez diferenciándose del resto de los tratamientos que resultaron iguales entre sí (P<0,10). Los valores de altura se muestran en el Gráfico 6.


Gráfico 6. Altura de plantas para los diferentes tratamientos de semillas.

El peso de la materia seca no fue diferente entre tratamientos (P>0,10), presentando un valor medio de 224 mg/10 plántulas.

Con respecto al efecto cultivar, se logró un igual número de plantas en El Paso 144, San Miguel INTA y Lemont, diferenciándose (P<0,10) del Palmar INTA, que presento el menor. Los valores de número de plantas por cultivar se presentan el Gráfico 7.

Gráfico 7. Número de plantas logradas por diferentes cultivares.

Discusión

Como se pudo observar, los diferentes tratamientos no afectan el número de plantas logradas, y en aquellos en donde interviene el ácido giberélico se produce un mayor alargamiento que resulta ventajoso para condiciones con temperaturas de germinación más críticas. La falta de diferencias en materia seca producida, aun con diferentes alturas, muestra claramente que el efecto del ácido giberélico no produce un mayor crecimiento sino sólo alargamiento celular.

Se debe mencionar que el ensayo recibió 20 mm de lluvia entre siembra y emergencia, y que a partir de allí no hubo aportes hídricos hasta el día 12 de marzo en que se aplicó riego. Ante esta situación las plantas fueron afectadas por un estrés hídrico. Ligado a esto, dentro de las acciones que se citan del ácido giberélico está la de inhibir el crecimiento radicular. Esta causa junto a la baja disponibilidad hídrica, serían las responsables de la reducción del stand de plantas determinada en el segundo muestreo para los tratamientos en donde participó el ácido giberélico.

El menor número de plantas que presentó el cultivar Palmar INTA, no es enteramente explicado por la menor densidad de siembra. No obstante, mediante ajustes de densidad se podría lograr una población apropiada para cualquiera de los cultivares ensayados bajo el sistema de siembra directa.

La utilización de promotores de crecimiento tal como el ácido giberélico debe ser tomada con precaución, debido a que si bien puede favorecer la implantación, también es más susceptible a adversidades climáticas. Se sugiere su utilización para condiciones de siembras tempranas, afectadas por bajas temperaturas, previendo la utilización de baños ante condiciones de estrés hídrico.

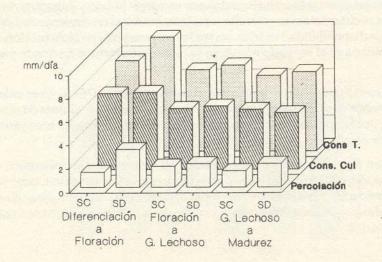
CONSUMO DE AGUA

Objetivos

Comparar el consumo de agua del sistema de laboreo mínimo y el sistema convencional.

Materiales y Métodos

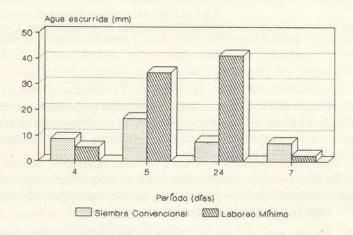
El seguimiento se realizó en dos lotes, uno de siembra convencional y otro de siembra con laboreo mínimo ubicados en la Estancia Jubileo. Ambos lotes se hallaban contiguos distanciados por una calle de aproximadamente 6 metros. El aforo se realizó mediante la instalación de un medidor de consumo similar al sistema Mariotte, con el que se evaluó el consumo diario por evapotranspiración y percolación. Los valores de evaporación de cultivo fueron calculados según la metodología descripta por Blanco (1989). Los valores de escurrimiento superficial fueron calculados por diferencia entre lo medido por el sistema Mariotte y el balance registrado por reglas colocadas en las taipas anterior, misma y posterior a la del sistema Mariotte. Ese registro se realizó al momento de efectuar la reposición del agua en esas taipas.


Los períodos de comparación de consumo fueron: diferenciación de primordio a floración, floración a grano lechoso y grano lechoso a madurez.

Cabe mencionar que los valores que se citan de consumo fueron provistos por riego y por las lluvias ocasionales para cada período

Resultados

El consumo de cultivo se mostró superior en el lote con labranza mínima en todos los períodos observados. Este mayor consumo se vió reflejado en una mayor percolación tal como se muestra en el Gráfico 7.


Gráfico 8. Consumo de agua.

El valor promedio de consumo total fue de 7,1 mm y 8,3 mm diarios para el sistema convencional y laboreo mínimo, respectivamente.

El sistema de labranza mínima también presentó un mayor escurrimiento superficial que el sistema convencional siendo de 1,95 y 1,05 mm/día, respectivamente. Es de mencionar que estos valores de escurrimiento no son constantes en el tiempo ya que su magnitud es independiente de la longitud del período que se analiza (Gráfico 9).

Gráfico 9. Escurrimiento por período.

Discusión

Si bien estos resultados son aun preliminares por tratarse de un solo año, la mayor percolación que se observa en el sistema de laboreo mínimo, resulta compatible con una de las ventajas que se le asigna a este sistema dentro de las prácticas conservacionistas y que es la de favorecer la infiltración. El sistema radicular muerto del cultivo antecesor (en este caso compuesto principalmente por viznaguilla y gramíneas) trabaja como un sistema de conducción del agua a través del perfil de suelo.

Con referencia al escurrimiento, las taipas más bajas del sistema de laboreo mínimo junto con la ocurrencia de lluvias en el momento en que la arrocera se encuentra con alta disponibilidad de agua, puede provocar escurrimientos más rápidos por la menor capacidad de retención. Se debe mencionar además que las imperfecciones en el trazado de taipas también facilitan este proceso.

Bibliografía

Souza, R.O.; Gomes, A. de S.; Dias, A.D. y Machado, M.O. 1991. Efeito do manejo do nitrogenio na cultura do arroz irrigado semeado em plantio direto. XIX Reuniao da Cultura do Arroz Irrigado. EMPASC. Santa Catarina. Brasil.

Bla nco, F. 1989. Arroz: consumo de agua. Riego. Serie Resultados Experimentales N° 27. Centro de Inv. Agríc. Alberto Boerger. ROU. pp 43-48.

ENSAYOS DE FERTILIZACION

De Battista, Juan J.; Regiardo, Edgardo; Artusi, Juan A. y Henderson, Oscar

Introducción

La fertilización es una técnica que no incide en forma importante en los costos de producción y permite, en muchos casos, un aumento en los rendimientos lo que constituye una manera de disminuir los costos por unidad de producto, haciendo más eficiente la utilización de los otros factores de producción.

Para decidir la fertilización es necesario conocer por una parte, los momentos críticos de requerimiento de nutrientes del cultivo y el efecto de dichos nutrientes sobre la elaboración del rendimiento y por otra, la capacidad del suelo para proveerlos.

Trabajos realizados en campos de productores de las tres zonas arroceras del este de Entre Ríos mostraron respuesta a la fertilización nitrogenada en más del 50% de los casos y respuesta a fósforo en solo el 11%. Esto condujo a priorizar la investigación sobre la fertilización nitrogenada, con el objetivo de elaborar criterios para un uso eficiente del fertilizante nitrogenado a partir del conocimiento del efecto del nitrógeno sobre los componentes del rendimiento, en los cultivares más difundidos. En la última campaña, ante la demanda del medio, se retomaron los trabajos en fertilización fosfatada y potásica.

En este trabajo se presentan los resultados de los ensayos conducidos en la campaña 1991/92 en campos de productores en el marco del convenio Proarroz.

FERTILIZACION CON NITROGENO FOSFORO Y POTASIO

Objetivos

El objetivo de estos ensayos fue evaluar la ocurrencia o no de respuesta a N, P y K en tres cultivares, en las zonas arroceras norte, centro y sur de Entre Ríos.

Materiales y Métodos

Los tratamientos fueron: Testigo, N, P, NP, NK y NPK que permiten estudiar los efectos principales de N y P y su interacción y obtener información sobre el efecto del K cuando se fertiliza con N.

Los niveles de nutrientes fueron elegidos de manera de asegurar una alta disponibilidad durante el ciclo del cultivo.

Nutriente	Kg/ha	Fertilizante	Aplicación
N	100	Urea	50% siembra + 50% diferenciación
P,O,	30	Superfosfato	siembra
P ₂ O ₅ K,O	45	Cloruro de K	siembra

Los cultivares utilizados fueron: San Miguel INTA, Paso 144 y Lemont. En cada localidad se sembraron tres ensayos (uno por cultivar) en parcelas de 4 x 8 m, en bloques completos aleatorizados con tres repeticiones, utilizando una sembradora experimental de 8 surcos a 15 cm con una densidad de 160 kg/ha.

Zona Norte: Establecimiento "La Alicia", distrito Moreira, departamento Concordia. Se sembró el 15 de noviembre, sobre suelo seco, con muchos terrones grandes. Los fertilizantes fueron incorporados con dos pasadas de rastra de discos y luego de la siembra se pasó rolo. La emergencia fue el 29 de noviembre. El control de malezas se realizó mediante aplicación aérea de herbadox + propanil junto con el lote comercial. Al final del período de llenado de granos se observó un intenso ataque de podredumbre del tallo en el cultivar San Miguel.

Zona Centro: Establecimiento Sr. Jourdan, Colonia Jubileo, departamento Villaguay. Se sembró el 28 de octubre, los fertilizantes se incorporaron con cultivador de campo y se roló luego de la siembra. La emergencia fue el 9 de noviembre. El control de malezas fue deficiente por problemas en el riego por rotura del pozo, presentando el ensayo una alta densidad de malezas, principalmente Brachiaria y Echinocloa.

Zona Sur: Establecimiento Sr. Arletaz, Colonia El Carmen, departamento Colón. Se sembró el 18 de octubre, sobre suelo seco, con grandes terrones. Los fertilizantes se incorporaron con vibrocultivador, se roló y taipeó luego de la siembra. La emergencia fue muy despareja luego de un baño, llegando al 50% el 20 de noviembre. El stand de plantas fue muy bajo y desparejo. El control de malezas se realizó con mochila manual eligiendo las zonas con mejor stand de plantas, utilizando 7 l de propanil + 650 g de facet por ha.

En macollaje se realizó recuento de plantas y se delimitó en una zona de 3 hileras por 1 m por parcela sobre la que se realizó la evaluación de rendimiento y sus componentes: N° de panojas, peso de mil granos, % de vaneo, N° de espiguillas totales, N° de panojas/planta y N° de espiguillas/panoja. Se cosechó una superficie de 4 m² para medir rendimiento. Este valor resultó inferior y mucho más variable que el obtenido en los sitios de muestreo, debido a factores como stand de plantas y enmalezamiento, por lo que no se tuvo en cuenta en la evaluación de los tratamientos.

En cada ensayo se practicó un análisis de varianza de los componentes del rendimiento incluyendo todos los tratamientos, donde el efecto de la fertilización potásica se determinó contrastando los tratamientos NK + NPK vs N + NP. Por otra parte se analizó el efecto de N, P y su interacción con un diseño de análisis factorial.

Resultados

Se presentan las medias de los tratamientos por cultivar y zona para cada variable, o solo la media general de los ensayos cuando no hubo efecto de los tratamientos en ninguna de las zonas.

Cultivar San Miguel INTA

- Plantas/m²: No hubo efecto de los tratamientos sobre la densidad de plantas en ninguno de los ensayos. Las medias fueron 169, 205 y 128 plantas/m² en las zonas norte, centro y sur, respectivamente.
- Rendimiento: Solo en la zona centro hubo repuesta a la fertilización nitrogenada (P<0,05) e interacción N x P (P<0,10). El agregado de N produjo aumento en los rendimientos de 910 kg/ha, mientras que cuando se aplicó N y P este fue de 2713 kg/ha sobre el testigo. En la zona norte, donde se produjo un intenso ataque de podredumbre del tallo, la fertilización potásica aumentó los rendimientos a razón de 10 kg arroz/kg de K₂O.

Cuadro 1. Rendimiento del cultivar San Miguel INTA, en kg/ha. (media de tres repeticiones).

Zona	Testigo	N	P	NP	NK	NPK	media	C.V.
Norte	5072	5654	5137	5449	5952	6214	5588	18,5
Centro	4183	5044	3578	6896	4218	5423	4889	19,2
Sur	3776	3998	3373	2704	3591	2525	3328	22,9

- Panojas/m²: No se detectó efecto de los tratamientos en ninguna de las zonas. Los valores medios fueron 290, 309 y 155 panojas/m² para las zonas norte, centro y sur, respectivamente. La zona sur presentó la mayor variabilidad, 22,5%, mientras que en las otras dos zonas fue de 13,6%.
- Espiguillas/ m^2 : Presentó la misma tendencia que el rendimiento con el que está altamente correlacionada (r>0,93) en todos los ensayos. En la zona centro hubo efecto de N (P<0.05) e interacción N x P (P<0,10). No hubo efecto de Ken ninguno de los ensayos. Los valores medios fueron 31590, 25480 y 19300 espiguillas/ m^2 con coeficientes de variación de 18,5; 18,5 y 22,9 % para las zonas norte, centro y sur, respectivamente.
- Vaneo: En la zona sur el % de vaneo aumentó de 12,7 a 16,0 % cuando se fertilizó con K. En las otras zonas no hubo efecto de los tratamientos, aunque se observó una tendencia a aumentar con la fertilización nitrogenada. Los valores medios fueron 13,6; 9,9 y 14,0 en las zonas norte, centro y sur, repectivamente.
- Peso de mil granos: No hubo efecto de los tratamientos en ninguno de los ensayos. Los valores medios fueron 20,6; 21,2 y 20,0 para las zonas norte, centro y sur, respectivamente.
- Panojas/planta: El P aumentó el N' de panojas/planta de 1,36 a 1,68 en la zona centro. No se detectó efecto de N ni de K sobre el macollaje. Los valores medios fueron: norte 2,21; centro 1,52 y sur 1,20.
- Tamaño de panoja: La fertilización nitrogenada aumentó el N° de espiguillas por panoja de 95 a 116 en la zona norte y de 65 a 94 en la zona centro, en la que también hubo interacción N x P.

Cuadro 2. Número de espiguillas/panoja en el cultivar San Miguel INTA.

Zona	Testigo	N	P	NP	NK	NPK	media	C.V.
Norte	87	108	102	123	116	120	109	10,7
Centro	77	87	52	100	84	88	81	16,8
Sur	131	149	116	111	133	112	125	12,5

Comentario: La fertilización produjo aumento en los rendimientos solo en la zona centro. En ésta, la respuesta a nitrógeno fue de 9,1 kg de arroz por kg de N, que se incrementó a 27,1 cuando también se fertilizó con 30 kg de P_2O_5 (67 kg/ha de superfosfato). Esto se debió al incremento en el N° de espiguillas/m² originadas en un mayor tamaño de panoja, ya que no hubo diferencias en la densidad de panojas.

Cultivar El Paso 144

- Plantas/m²: No hubo diferencias en la densidad de plantas entre tratamientos. Los valores medios fueron: 157, 155 y 116 en la zonas norte, centro y sur, respectivamente.
- Rendimiento: La fertilización nitrogenada incrementó los rendimientos en 601 y 1037 kg/ha en las zonas norte y centro, respectivamente. No hubo respuesta a P ni K en ninguna de las zonas.

Cuadro 3. Rendimiento del cultivar El Paso 144, en kg/ha (media de tres repeticiones).

Zona	Testigo	N	P	NP	NK	NPK	media	C.V.
Norte	6557	7158	6839	7473	7542	7781	7225	9,5
Centro	6348	7385	5669	8077	7234	8071	7131	17.4
Sur	6018	6043	6010	6468	7313	6336	6365	19.5

- Panojas/m²: No hubo diferencias significativas entre tratamientos en la densidad de panojas en ninguna de las zonas, aunque los tratamientos N y NP tuvieron un mayor número de panojas que el testigo. Los valores medios fueron 335; 367 y 371 con coeficientes de variación de 11,9; 16,9 y 16,6 para las zonas norte, centro y sur, respectivamente.
- Espiguillas/m²: Esta variable presentó el mismo comportamiento que el rendimiento. La fertilización nitrogenada incrementó un 14 % el N° de espiguillas/m² en las zonas norte y centro, pero estas diferencias no fueron significativas. No hubo efecto de P ni de K. Los valores medios fueron de 35550; 33260 y 32550 en las zonas norte, centro y sur, respectivamente.
- Vaneo: No hubo efecto de los tratamientos sobre el % de vaneo. La zona centro presentó el valor inferior 7,1 %, seguida por la zona norte 10,7% y sur 14,2 %. Esta variable presentó altos coeficientes de variación, entre 20 y 22%.
- Peso de mil granos: En la zona norte se encontró efecto negativo de N (N_0 22,9 y N_1 22,5) y efecto positivo de P (P_0 22,5 y P_1 22,9). En la zona centro el nitrógeno aumentó el peso de mil granos de 22,6 a 23,0. En la zona sur no hubo diferencias entre tratamientos.
- Panojas/planta: La fertilización no afectó el macollaje en forma signifivativa, aunque los tratamientos con N muestran un valor ligeramente superior. Los valores medios fueron: norte 2,23; centro 2,33 y sur 3,36.
- Tamaño de panoja: Solo en la zona centro se encontró efecto de N e interacción N x P en el número de espiguillas/panoja.

Cuadro 4. Número de espiguillas/panojas en el cultivar El Paso 144.

Zona	Testigo	N	P	NP	NK	NPK	media	C.V.
Norte	94	112	106	108	105	117	107	10,2
Centro	90	89	85	106	90	95	93	6,1
Sur	88	89	86	88	88	90	88	15,3

Comentario: El cultivar El Paso 144 no respondió en forma significativa a la fertilización, pero se observó un aumento medio en los rendimientos para las tres zonas de 861 kg/ha por el agregado de 100 kg/ha de N y de 1031 kg/ha cuando se aplicó N junto a 30 kg/ha de P_2O_5 .

Cultivar Lemont

- Plantas/ m^2 : En las zonas norte y centro no hubo diferencias entre tratamientos, la densidad media fue de 135 y 171 pl/ m^2 . En la zona sur los tratamientos NP y NK presentaron un N° de plantas significativamente inferior que el testigo.
- Rendimiento: No hubo respuesta a la fertilización en ninguna de las zonas. Los rendimientos medios fueron 6225; 5444 y 3851 Kg/ha con coeficientes de variación de 15,5; 19,3 y 20,8% para las zonas norte, centro y sur, respectivamente.
- Panojas/m²: No se detectó efecto de los tratamientos a pesar de las diferencias en el N° de plantas en la zona sur. Los valores medios fueron: norte 324, centro 302 y sur 199.
- Espiguillas/m²: No hubo efecto significativo de los tratamientos en las zonas norte y sur. En la zona centro la fertilización nitrogenada aumentó un 18% el N° de espiguillas pero esto no se tradujo en el rendimiento por el incremento de 6,7 a 10,2 % en el vaneo.

El peso de mil granos y el N° de panojas/planta no fueron afectados por la fertilización. Los valores medios fueron: norte 23,6 y 2,42; centro 22,5 y 1,81; sur 22,5 y 1,69, respectivamente.

• Tamaño de panoja: Este componente tampoco fue afectado por los tratamientos, siendo los valores medios 90, 87 y 99 para las zonas norte, centro y sur, respectivamente.

Comentario: Contrariamente a lo esperado, este cultivar no respondió a la fertilización, posiblemente debido a la variabilidad en el stand de plantas dentro de cada tratamiento reflejada en coeficientes de variación entre 16 y 21 %.

Conclusiones

Los resultados deben ser tomados con reservas debido a los problemas de stand de plantas y enmalezamiento explicados, no obstante se pueden extraer las siguientes conclusiones:

Se confirmó una respuesta bastante generalizada a N en los cultivares San Miguel INTA y El Paso 144 aunque de magnitud variable.

La fertilización con fósforo disminuyó ligeramente los rendimientos, pero cuando se aplicó N y P los rendimientos fueron superiores al testigo y a la fertilización nitrogenada sola. La interacción N x P fue significativa en un solo caso: cv. San Miguel INTA en la zona centro.

La fertilización potásica produjo aumento de los rendimientos solo cuando hubo un intenso ataque de podredumbre del tallo (San Miguel INTA en zona norte) confirmando resultados de otros países en los que se observó un mejor comportamiento frente a esta enfermedad por agregado de potasio. Se considera conveniente estudiar la respuesta a K especialmente en situaciones con antecedentes de podredumbre del tallo.

El cultivar El Paso 144 presentó el mayor nivel de rendimiento de los testigos sin fertilizar en todas las zonas con un rendimiento medio de 6318 kg/ha, seguido por Lemont con 5231 kg/ha y San Miguel INTA con 4343 kg/ha. El vaneo fue superior en San Miguel INTA 10,8 %, seguido de El Paso 144 con 9,9 % y Lemont 8,0 %; en todos los casos la fertilización nitrogenada aumentó el vaneo.

El incremento de los rendimientos encontrado en los cultivares San Miguel INTA y El

Paso 144, se debió al aumento en el número de espiguillas/m², ya que no hubo diferencias en el peso de mil granos entre tratamientos de un mismo cultivar. En San Miguel INTA el número de espiguillas/m² se incrementó solamente por aumento del tamaño de la panoja (17% con N y 13% con NP) ya que no hubo diferencias entre tratamientos en el macollaje (media 1,49 panojas/planta) a pesar del stand de plantas relativamente bajo de 167 plantas/m². En El Paso 144 el aumento en el número de espiguillas/m² se debió por un lado, a un incremento en el macollaje del 11 % con N solo y del 18 % con N y P, y por otro, al aumento en el tamaño de la panoja de 7 y 11 % con N y NP, respectivamente. Estos resultados sugieren que San Miguel INTA no aprovechó los 50 kg de N aplicados a la siembra y que solo tuvo efecto la fertilización en diferenciación, mientras que El Paso 144, quizás debido a una mayor capacidad de macollaje, respondió a la aplicación de base aumentando el número de panojas/planta y a la aplicación en diferenciación aumentando el tamaño de la panoja.

MOMENTO DE APLICACION DEL NITROGENO.

Objetivos

El objetivo de estos ensayos fue estudiar el efecto del momento de aplicación de nitrógeno sobre los componentes del rendimiento en dos cultivares con la finalidad de elaborar criterios para la conducción eficiente de la fertilización nitrogenada.

Materiales y Métodos

En las mismas localidades y en forma contigua a los ensayos de NPK se sembraron los cultivares San Miguel INTA y El Paso 144 en parcelas de 4 x 8 m, utilizando un diseño de bloques al azar con 3 repeticiones con los siguientes tratamientos de fertilización nitrogenada utilizando urea.

	Tratamientos	Dosis de N(kg/ha)
1)	Siembra (70%) + Dif (30%)	100
2)	Macollaje	100
3)	Diferenciación	30
4)	Diferenciación	100
5)	Testigo	

El tratamiento 1 tiene por objetivo proveer una alta disponibilidad de N desde el inicio del ciclo para favorecer el macollaje y al mismo tiempo asegurar la formación de un elevado N° de granos por panoja. Con el tratamiento 2 se pretende lograr un alto N° de panojas y a la vez cubrir los requerimientos para un elevado N° de granos/panoja. Los tratamientos 3 y 4 tienen por objetivo aumentar el N° de granos por panoja. El tratamiento 4 permitirá evaluar la eficiencia de una alta dosis en el momento de máxima tasa de absorción contrastándola con la de macollaje y el tratamiento 3 aislar el efecto de la segunda aplicación del tratamiento 1.

Resultados

Cultivar San Miguel INTA

• Plantas/m²: No hubo diferencias entre tratamientos en ninguna de las zonas. La densidad media fue 159; 187 y 149 pl/m² en las zonas norte, centro y sur, respectivamente.

• Rendimiento: En todas las zonas la fertilización nitrogenada produjo aumento en los rendimientos respecto a los testigos sin fertilizar, pero no hubo diferencias significativas entre los distintos momentos de aplicación. En la zona norte realmente no hubo diferencias entre los distintos momentos de aplicación de N, pero en las zonas centro y sur, se destaca claramente la fertilización en macollaje seguida de la aplicación en diferenciación con 100 kg de N/ha.

Cuadro 5. Rendimiento del cultivar San Miguel INTA, en kg/ha.

Zona	Testigo	S-D	Mac	Dif 30	Dif 100	media	C.V.
Norte	3585	5213	5335	5331	5475	4992	14,9
Centro	4964	5073	8128	5118	7115	6079	26,1
Sur	4194	5074	5889	4635	5596	5078	11,5

El incremento en los rendimientos estuvo estrechamente relacionado al N° de espiguillas (valores de r>0,98) debido principalmente al aumento del tamaño de la panoja y en menor medida al aumento del macollaje.

Cuadro 6. Número de espiguillas/panoja en el Cultivar San Miguel INTA.

Zona	Testigo	S-D	Mac	Dif 30	Dif 100	media	C.V.
Norte	87	116	109	105	105	104	10,8
Centro	94	102	105	99	110	102	23,7
Sur	119	132	135	148	137	134	9,5

No hubo diferencias significativas entre tratamientos en el % de vaneo ni en el peso de mil granos, aunque este último fue ligeramente inferior cuando se fertilizó con nitrógeno.

Cultivar El Paso 144

- Plantas/m²: No hubo diferencias entre tratamientos en ninguna de las zonas. La densidad media de cada ensayo fue: norte 166; centro 167 y sur 119.
- Rendimiento: No se detectaron diferencias significativas entre tratamientos en ninguna de las zonas. Sin embargo, cuando se comparó testigo vs fertilizado se encontró una respuesta al nitrógeno de 461; 1539 y 1550 kg/ha para las zonas norte, centro y sur, respectivamente. El las zonas centro y sur la aplicación de macollaje rindió significativamente más que la de diferenciación con la misma dosis de N. En la zona norte no hubo diferencias entre estos dos momentos. En la zona centro los rendimientos más altos correspondieron a los tratamientos 3 y 1 que tienen en común la fertilización en diferenciación con 30 kg de N/ha.

Cuadro 7. Rendimiento del cultivar El Paso 144, en kg/ha.

Zona	Testigo	S-D	Mac	Dif 30	Dif 100	media	C.V.
Norte	6757	6726	6978	7973	7194	7126	13,7
Centro	5920	8025	7304	8540	5967	7151	17,9
Sur	4257	4735	6791	6123	5577	5497	30,0

No hubo efecto de los tratamientos sobre el % de vaneo, el peso de mil granos ni el tamaño de panoja. El incremento en el rendimiento por la fertilización nitrogenada se debió

al aumento en el N' de espiguillas/ m^2 que está altamente correlacionado con el macollaje (panojas/planta) en las zonas norte y sur (r=0,46 y 0,81 respectivamente) y con el N' de espiguillas/panoja en la zona sur (r=0,68).

Conclusiones

Teniendo en cuenta las mismas restricciones señaladas para los ensayos NPK podemos concluir:

En el cultivar San Miguel INTA la respuesta media a la fertilización nitrogenada fue de 17,6; 13,9 y 11,0 kg de arroz/kg de N en las zonas norte, centro y sur, respectivamente.

Considerando las tres zonas en conjunto la fertilización en macollaje produjo los mayores incrementos en los rendimientos (52%) superando a la de diferenciación con 100 kg de N/ha (43%). Los tratamientos 1 y 3 produjeron incrementos muy próximos entre sí 21 y 18%, respectivamente, lo que sugiere que el efecto se debe a la fertilización en diferenciación con 30 kg de N/ha. La ausencia de efecto de la fertilización nitrogenada de base se verifica ya que ambos tratamientos presentan el mismo número de panojas/m² (6% superior al testigo) con panojas del mismo tamaño, 117 espiguillas vs 100 del testigo.

El rendimiento dependió del N° de espiguillas/m² que a su vez estuvo determinado principalmente por el tamaño de la panoja y en menor grado por el N° de macollos/planta.

Cuadro 8. Rendimiento promedio de las zonas norte, centro y sur, en kg/ha.

Cultivar	Testigo	S-D	Mac	D30	D100
San Miguel INTA	100	121	152	118	143
El Paso 144	100	115	124	134	111

En el cultivar El Paso 144 la respuesta media en las zonas centro y sur fue de 15,5 kg de arroz/kg de N aplicado.

Se destacaron las aplicaciones en macollaje y diferenciación con 30 kg de N/ha, con incrementos de 24 y 34%, respectivamente.

El rendimiento estuvo determinado por el número de espiguillas/m² que dependió esencialmente del macollaje (panojas/planta) y en menor grado del tamaño de la panoja.

SISTEMATIZACION PARA EL CULTIVO DE ARROZ

Viñer, Laura G.; Arguissain, Gustavo G.

Introducción

Una forma de contribuir con la actividad arrocera, es la de solucionar los problemas de manejo y hacer más eficientes los factores de producción.

El riego es un componente muy importante de los costos de producción, mejorar la sistematización del lote puede ser una forma de aprovechar el agua de riego.

Normalmente la sistematización en terrazas es utilizada como un eficaz método de control de la erosión de los suelos, pero además éste tipo de sistematización posee ventajas tal como la reducción en el número de taipas, que podrían ser aprovechadas en el manejo de éste cultivo. A tal efecto se realizó en la campaña 91/92 una experiencia en la EEA INTA Concepción del Uruguay.

Se debe aclarar que en este trabajo si bien hay decapitación de suelo, las magnitudes de las mismas son muy inferiores a las que se realizan cuando se construye un verdadero sistema de terrazas, y que se le da ese nombre para diferenciarlo de la simple nivelación que comunmente se realiza en la zona.

Objetivos

Comprobar si existen diferencias en los rendimientos obtenidos en los Sistemas Convencional y Terraza, y comparar el gasto de agua entre los dos Sistemas.

Materiales y Métodos

El suelo en donde se realizó la experiencia es un Vertisol con perfil gradacional (Hein y Purnell, 1974).

El terreno presentó pendientes en tres direcciones diferentes (pendiente compuesta).

Para que el desnivel de las terrazas fuera de 5 cm como se buscaba de acuerdo a la lámina de agua requerida en esta experiencia, las decapitaciones fueron de 7 cm (Gráfico 1).

Gráfico 1. Esquema de la sistematización realizada.

7 cm de corte		Corte efectuado
	Zona de Decapitación	Zona de Relleno

Para la construcción de las parcelas convencionales se trató de reproducir las condiciones de campo en donde el desnivel promedio utilizado para las pendientes que se manejaron fue de 11 cm entre taipas. El distanciamiento entre taipas para las terrazas fue de 10 m y para convencional de 5 m.

Para sistematizar se pasó un disco liviano, el que aflojó el suelo a decapitar y facilitó la penetración de la niveladora. Para la decapitación propiamente dicha, se utilizó una pala de arrastre. En general no requirió más de dos pasadas de esta herramienta para llegar a los niveles de corte deseados.

Se terminó de preparar la cama de siembra con dos pasadas de rastra de discos pesada y una con vibrocultivador con rabasto. Estas últimas operaciones fueron practicadas en todo el ensayo. El suelo así preparado permaneció en barbecho durante 30 días antes de la siembra.

El diseño experimental utilizado fue en parcelas sub-subdivididas con cuatro repeticiones. El tratamiento principal fue el sistema, siendo las variables terraza y convencional. La segunda división fue la posición en la parcela con las variables de zona decapitada (alto) y zona de relleno (bajo). La tercera fue cultivares en donde los tratamientos consistieron en dos cultivares, San Miguel INTA y El Paso 144. La densidad de siembra utilizada fue de 200 kg/ha. La distancia entre surcos fue de 20 cm. La última división fue fertilización que consistió en la aplicación de una dosis de base con Superfosfato Triple de Calcio a razón de 100 kg/ha y Urea a razón de 50 kg/ha, y un testigo sin fertilizar. En macollaje y diferenciación se aplicaron 50 kg/ha de Urea.

Lo que se persiguió al determinar los tratamientos de fertilización y que llevó a no incorporar una dosis intermedia de N entre el testigo y el fertilizado fue la comparación del comportamiento de los dos cultivares bajo dos formas diferentes de sistematización con dos provisiones extremas de nutrientes.

El control de malezas se realizó mediante Molinate (7 l/ha) pre-siembra el que fue incorporado con rastra de discos. Otra aplicación fue hecha dos días antes de comenzar el riego cuando el cultivo estaba en pleno macollaje. En esta ocasión se utilizó una mezcla de Quinclorac (750 g/ha p.c.), Propanil Floable (8 l/ha) y 2,4 D (1 l/ha), para combatir capín, gramíneas en general y malezas de hoja ancha, respectivamente.

El riego se efectuó en forma individual, es decir que se construyeron canales de alimentación, uno por cada serie de parcelas. Una vez obtenidos los niveles de agua requeridos, el suministro se interrumpía hasta el día siguiente. La medición del gasto de agua de cada parcela se realizó a través de la medición de la disminución del nivel de agua.

La cosecha se realizó en forma manual, siendo la superficie de 0,8 x 2 m.

Resultados

Germinación:

Se determinó una diferencia significativa (P<0,05) en la germinación de los distintos sistemas, presentando la terraza un mayor número de plantas/ m^2 (Terraza: 388,38 pl/m^2 ; Convencional: 299,92 pl/m^2). Por otra parte, se hallaron también diferencias significativas (P<0,05) en el número de plantas entre el alto y bajo, hallando un mayor número para la parte del alto de la parcela (Convencional Alto: 158,50; Convencional Bajo: 141,42; Terraza Alto: 199,42; Terraza Bajo: 188,96 pl/m^2).

Agua:

Los valores obtenidos a partir de las observaciones diarias durante 63 días, mostraron que el gasto de agua en las terrazas (170,5) fue menor con respecto a las convencionales (185,58), aunque esa diferencia no fue significativa (P<0,05). Se observó que en las parcelas convencionales se produjo una mayor disminución del nivel en la parte superior que en la inferior, ésto probablemente debido a que parte del agua de la parcela superior se infiltraba hacia la inferior.

Rendimiento:

Se halló un efecto de interacción sistema x decapitación en el rendimiento en granos. Comparando los rendimientos obtenidos en la zona del alto entre los dos sistemas, las terrazas presentaron menores rendimientos a los del sistema convencional, en el caso del área de relleno (bajo) esos valores se vuelcan en favor de las terrazas. En las parcelas convencionales no se diferencian los rendimientos entre alto y bajo.

En el análisis del sistema como conjunto los rendimientos del sistema convencional no difieren del de terrazas (Cuadro 1).

Cuadro 1. Rendimientos por zonas de decapitación.

	Siste	mas	
Conve	ncional	Ter	raza
Alto	Bajo	Alto	Bajo
4103	3893	3647	4240

Se hallaron diferencias significativas (P<0,05) por el agregado de fertilizante, es decir que la fertilización aumenta los rendimientos sin presentar interacción con las otras variables.

Si bien el valor de los rendimientos es mayor en El Paso 144, las diferencias con San Miguel INTA no fueron significativas (P>0,05).

Discusión y Conclusiones

Germinación:

Los resultados del stand de plantas mostraron que si bien en el sistema de terrazas se realizó una decapitación, ésta no fue lo suficientemente profunda como para incidir en la germinación.

El corte efectuado y el tipo de estructura típica de los horizontes subsuperficiales arcillosos no tuvieron efectos negativos inmediatos sobre el stand de plantas.

Agua:

Con respecto al consumo de agua en ambos sistemas, los resultados fueron similares a los hallados por Baver et al. (1972), en donde las pérdidas por escorrentía son similares, y sólo cambia la velocidad de la misma.

Es de destacar que en las parcelas convencionales, el mayor desnivel utilizado hizo que porciones del alto de éstas permanecieran durante un tiempo sin nivel de agua, hasta que fuera repuesta. Este efecto no se produjo en las terrazas, manteniendo una mayor homogeneidad del nivel de lámina. El mantenimiento de una lámina uniforme permite hacer más eficientes aquellas prácticas de manejo tales como fertilización y control de malezas. En la primera de ellas impidiendo cambios en el potencial de óxido-reducción del suelo que

favorecen los procesos de desnitrificación, y en la segunda evitando las reinfestaciones de malezas.

Rendimiento:

Como ya se mencionó, con la decapitación se extrajo un cierto volumen de suelo fértil y de mejor estructura que los horizontes subsuperficiales, es así que, en la zona de relleno aumenta el espesor del horizonte donde se desarrollan las raíces, facilitando su penetración, obteniendo un mayor desarrollo en las plantas, y como consecuencia de ello un mayor rendimiento.

En síntesis, el sistema de terrazas ofrece las ventajas de un igual rendimiento que el sistema convencional, presenta una menor área destinada a taipas y permite conservar una lámina de agua más homogénea que facilita algunas prácticas de cultivo.

Bibliografía

Baver, L.D.; Gardner, W.H.; Gardner, W.R.. 1973. Control de la erosión del suelo. Erosión del suelo. Erosión causada por el agua. Física de suelos. pp 494-496.

Hein, N.E.; Purnell, M.F. 1974. Los suelos de la Estación Experimental Agropecuaria Concepción del Uruguay. Entre Ríos.

RELEVAMIENTO DEL GORGOJO ACUATICO

Villarreal, Eduardo; Livore, Alberto

El gorgojo acuático es una de las plagas que más daños causan al cultivo de arroz. Son varias las especies de este insecto que atacan este cultivo (Oryzophagus oryzae, Helodytes foveolatus, H. vatius, H. litus, Lissorhoptrus tibialis), siendo la de mayor difusión Oryzophagus oryzae.

Las larvas de este insecto atacan a las raíces de las plantas de arroz, alimentándose y reduciendo el área de éstas, disminuyendo el aprovechamiento de los nutrientes del suelo, y como consecuencia las plantas manifiestan una marcada disminución en el vigor y el crecimiento.

Cuando estos síntomas son observados, se debe a que en el sistema radicular los mayores perjuicios ya han sido ocasionados.

El ataque puede durar alrededor de 30 días, que es el tiempo que dura la larva en cumplir su estado y empupar, ésto ocurriría en el caso que el ataque fuera ocasionado por una sola generación. El ciclo biológico es de aproximadamente 42 días dependiendo de la temperatura, para la especie O. oryzae (Paiva Castro, 1991).

Los mayores niveles de infestación de las larvas ocurre entre los 21 y 35 días después de iniciada la inundación en la arrocera (Smith, 1986), y con un número de larvas superior a 2 ó 3 por planta, el rendimiento de granos puede sufrir reducciones (Oliveira, 1987). Estos parámetros estarían indicando el momento más oportuno para realizar el control de la plaga.

Si bien no se han estudiado medidas de control que no presenten riesgos o daños económicos, la retirada del agua de irrigación del terreno es una de las prácticas culturales realizadas por los productores, siendo eficiente al provocar la muerte de la larva. No obstante presenta algunas desventajas muy importantes como son:

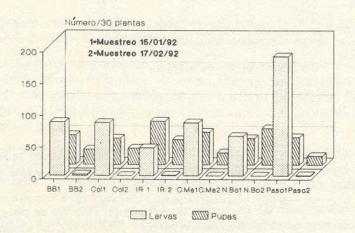
- . Riesgo de reinfestación de malezas.
- . Alto costo de reposición del agua de riego.
- . Provocar perdidas de fertilidad por desnitrificación.
- . Riesgo de no reponer el agua por alta demanda y suelo agrietado.

Con respecto al control químico, está dirigido a las aplicaciones con Carbofuran, el cual es un producto altamente tóxico, que probablemente provocaría alteraciones en el hábitat arrocero. Teniendo en cuenta que el gorgojo acuático posee predatores como pájaros, sapos, ranas, arañas y una especie de libélula (*Pantala flavescens*) (Smith, 1986), la utilización de este insecticida provocaría un importante desequilibrio en el sistema.

Debido a la relevancia que ha tenido el gorgojo acuático en la campaña 91/92, se han llevado a cabo una serie de relevamientos con el objetivo de ampliar los conocimientos sobre las generaciones, nivel de incidencia y frecuencia de ataque de dicha plaga.

Los relevamientos se realizaron en las localidades de Jubileo (en dos épocas), Villa

Clara y 1º de Mayo y en distintos cultivares comerciales: Blue Belle, New Bonnet, El Paso 144, IRGA 414, Colombiano, Colonia Mascías Nº 10 y San Miguel.

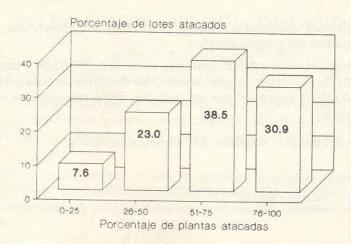

En cada lote se trazó una transecta con 10 estaciones ubicadas en su mayoría en los préstamos de las taipas. En cada una de ellas se recolectaron 3 plantas. Con el material obtenido se realizó un recuento de larvas, pupas y adultos.

Resultados

En el primer muestreo realizado en Jubileo (15/01/92) se observó una marcada superposición de los estadíos del gorgojo acuático.

Las muestras recogidas en el segundo muestreo en Jubileo (17/02/92), como las de Villa Clara y 1º de Mayo (28/01/92) demuestran una notable disminución en la presencia de larvas (Gráfico 1). Esto estaría indicando que los controles debieran realizarse en épocas anteriores a la mencionada.

Gráfico 1. Incidencia del gorgojo acuático. Diferencias de Epoca.


La detección de los adultos fue ocasional, ya que el relevamiento estuvo dirigido a evaluar el estado del insecto que causa los mayores daños, por lo tanto el muestreo consistió en la recolección de la parte radicular de la planta (Cuadro 1).

Cuadro 1. Recuento de larvas, pupas y adultos y porcentaje de plantas atacadas por cada cultivar o lote.

Fecha	Localidad	Cultivar	Nº Pls.	Nº Larvas	Nº Pupas	Nº Adultos	% Pls. atacadas
15/1/92	Jubileo	IRGA 414	30	44	69	2	76.6
15/1/92	Jubileo	Colombiano	30	84	42	0	86.6
15/1/92	Jubileo	N.Bonnet	26	57	38	3	73.1
15/1/92	Jubileo	C.Mascías10	30	84	52	0	96.6
15/1/92	Jubileo	E. P. 144	30	188	44	0	76.6
15/1/92	Jubileo	B. Belle	30	85	47	2	40.
23/1/92	1º de Mayo	San Miguel	91	2	26	1	19.8
28/1/92	V. Clara	E. P. 144	22	4	27	0	53.8
17/2/92	Jubileo	B. Belle	30	2	24	0	53.3
17/2/92	Jubileo	Colombiano	30	0	26	0	50
17/2/92	Jubileo	IRGA 414	30	1	40	0	53.3
17/2/92	Jubileo	C. Mascías	30	0	19	0	43.3
17/2/92	Jubileo	N. Bonnet	30	0	58	0	70
17/2/92	lubileo	E. P. 144	30	0	14	0	36.6

En cuanto a los niveles de infestación se observó que el 69,4 % de los lotes relevados presentaron más del 50% de las plantas atacadas (Gráfico 2).

Gráfico 2. Nivel de infestación de lotes con distintos porcentajes de plantas atacadas.

Conclusiones

Del análisis de los parámetros evaluados, número de larvas, pupas, adultos, se concluye que en todos los lotes relevados se manifestó una gran difusión y una marcada superposición de estadíos.

En el segundo relevamiento de mediados de febrero (17/02/92) se observó una disminución de larvas con respecto a la observación anterior (15/01/92), del mismo modo la cantidad de pupas no es coincidente con la cantidad de larvas muestreadas en el primer relevamiento. Esto podría indicar la presencia de factores climáticos, biológicos y/o de manejo que serían los responsables de las reducciones observadas.

Esta hipótesis podría ser probada en futuros trabajos para establecer a) cuándo se produce la aparición de los adultos en el cultivo y b) cuándo la población de larvas alcanza su tamaño máximo, relacionándolas al estado fenológico, a las condiciones climáticas y de manejo (herbicida y fertilización). Paralelamente se determinaría cuáles son los umbrales de disminución de rendimiento a partir de los que se hace aconsejable el control químico.

Bibliografía

Oliveira, J.V. 1987. Caracterização e controle dos principais insetos do arroz irrigado. Lavoura Arrozeira 40(374):17-24.

Paiva Castro, L. M. 1991. Gorgulhos aquáticos do arroz. Caracterização e controle. Lavoura Arrozeira 44(395):7-14.

Smith, C.M.; Bagent, J.L.; Linscombe, S.D.; Robinson, J.F. 1986. Insect pests of rice in Louisiana. Louisiana Agric. Exp. Sta. Bull. 774:1-24. In: Gorgulhos aquáticos do arroz. Caracterizacao e controle. Lavoura Arrozeira 44(395).

RELEVAMIENTO DE PODREDUMBRE DEL TALLO

Villarreal, Eduardo H.; Livore, Alberto

La podredumbre del tallo causada por Helminthosporium sigmoideum se ha manifestado en estos años como un factor limitante de la producción arrocera de nuestra zona.

Esta enfermedad comienza a manifestarse generalmente durante el estado postfloración del desarrollo de la planta de arroz. El ataque se intensifica cuando las plantas se acercan a la maduración y el máximo es post-madurez fisiológica. Se inicia con pequeñas lesiones oscuras e irregulares de una característica acuosa en las vainas de las hojas, a un nivel próximo al del agua.

La penetración del hongo es facilitada por lesiones mecánicas, causadas por insectos, animales, viento, etc. A medida que la infección progresa y el hongo ha avanzado hasta el interior del tallo, la pudrición se torna visible y en el interior de los tallos se pueden observar los esclerocios, que es el signo más característico de esta enfermedad.

No existe una medida de control eficiente. La enfermedad es difícil de erradicar en las áreas infestadas por esclerocios. Sin embargo se pueden implementar medidas de control preventivas que puedan disminuir el número de esclerocios viables en áreas infectadas y las condiciones favorables a los ataques del hongo como pueden ser:

- Quemado de restos de cultivo, lo que no es compatible con técnicas de conservación.
- Aislamiento de áreas atacadas de áreas sanas mediante taipas, con irrigación y drenaje independientes.
- Incorporación de variedades resistentes.
- Rotaciones.

En los últimos años se ha registrado una mayor frecuencia de consultas por parte de productores y asesores arroceros por enfermedades del tallo. Esto ha motivado la realización de un relevamiento con el propósito de estimar la difusión de este tipo de enfermedades en la zona arrocera.

Este relevamiento fue llevado a cabo en distintas localidades por las AER Uruguay, Colón, Gualeguaychú, Villaguay y Concordia. Las muestras fueron recolectadas en distintos cultivares, entre fines de abril y mediados de mayo, algunas de ellas provenían de lotes ya cosechados (Cuadro 1).

Cuadro 1. Número de plantas muestreadas por lote en diferentes localidades correspondientes a las distintas AER.

Muestra	AER	Localidad	Cultivar	Nº de pls. muestreadas		
1	Villaguay	C. Sta.Rosa	El Paso 144	39		
		C. Sta. Rosa				
3	Villaguay	Dtto. Lucas	IRGA 410	25 18		
4	Villaguay	C. Sta. Rosa	C. Mascías	25		
5	Villaguay	Lucas Sur	B.Belle	34		
6	Villaguay	Lucas Norte	San Miguel	40		
7	Villaguay	Lucas Norte	Yeruá	32		
8	Villaguay	Lucas Norte	Lebonnet	12		
1	Uruguay	Basso.	B.Belle	51		
2	Uruguay	V. Mantero		58		
3	Uruguay	Urquiza	Yeruá	. 47		
4	Uruguay	Rocamora	B.Belle	51		
5	Uruguay	V. Mantero	B.Belle	43		
6	Uruguay	Líbaros	B.Belle	64		
7	Uruguay	Urquiza	Yeruá	47		
8	Uruguay	Rocamora	B.Belle	48		
9	Uruguay	V. Mantero	El Paso 144	51		
10	Uruguay	Herrera	B.Belle	57		
11	Uruguay	Herrera	IRGA 409	40		
1	Gualeguaychú	Gran Ggchú.	B.Belle	59		
2	Gualeguaychú	Gran Ggchú.	B.Belle	56		
3	Gualeguaychú	Gran Ggchú.	B.Belle	54		
4	Gualeguaychú	A. del Cura	B.Belle	65		
5	Gualeguaychú	A. del Cura	B.Belle	59		
6	Gualeguaychú	Gran Ggchú.	B.Belle	53		
7	Gualeguaychú	A. del Cura	B.Belle	55		
1	Colón	V. Elisa	San Miguel	19		
2	Colón	San José	Yeruá	27		
2 3	Colón	V. Elisa	El Paso 144	18		
4	Colón	V. Elisa	Yeruá	19		
5	Colón	V. Elisa	B.Bonnet 50	25		
6	Colón	La Clarita	San Miguel	28		
7	Colón	La Clarita	B. Bonnet 50	32		
8	Colón	La Clarita	Yeruá	33		
9	Colón	La Clarita	Yeruá	26		
10	Colón	V. Elisa	B.Bonnet 50	35		
1	Concordia	Los Sauces	B. Belle	55		
2	Concordia	Los Sauces	Yeruá	42		
3	Concordia	Gral. Campos	El Paso 94	59		

Resultados

Se analizaron estas muestras mediante lupa binocular, observándose las lesiones causadas, localizaciones de las mismas y presencia de esclerocios. En estas observaciones se detectaron dos tipos de esclerocios: 1) de fácil visualización, redondos y de color negro, característicos de *Sclerotium oryzae* (estado esclerótico de *H. sigmoideum*) y 2) de igual forma y color pero que sólo fue visible a la lupa binocular.

En el análisis del relevamiento se determinó que el 100 % de las muestras fueron infectadas.

- Muestras de AER Villaguay

En el total de las muestras se registró solamente presencia de esclerocios pequeños. En las muestras 3, 5, 6 y 7 hubo presencia de esclerocios en vaina e interior del tallo, donde se vió deterioro de tejido en los dos entrenudos inferiores de la planta. En las restantes los esclerocios solamente se encontraron en la vaina manteniéndose el tallo sano.

- Muestras AER Uruguay

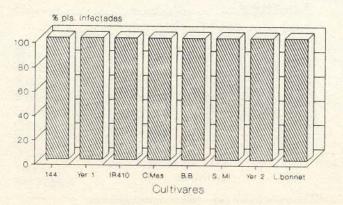
En el total de las muestras se encontraron los 2 tipos de esclerocios, localizados entre vaina y tallo y en el interior de tallos. En la muestra 4 hubo algunos tallos barrenados, no observándose diferencias de ataque con respecto a los demás. En la muestra 10 los esclerocios grandes se ubican en el interior del tallo y la mayoría de los esclerocios pequeños entre tallo y vaina.

- Muestras AER Gualeguaychú

Las muestras 1, 3, y 7 presentaban ambos tipos de esclerocios ubicados entre tallo y vaina, mientras que las 2, 5 y 6 manifestaron un notorio estado de putrefacción, encontrándose ambos tipos de esclerocios en vaina, entre vaina y tallo, tallo e interior de tallo. La muestra 4, pese a presentar la sintomatología característica de la enfermedad, solamente presentó esclerocios pequeños.

- Muestras AER Concordia

Las muestras 1 y 3 tuvieron una gran manifestación del síntoma de la enfermedad, encontrándose ambos tipos de esclerocios en el interior de los tallos, entre vaina y tallo y en entretejido de la vaina. En la muestra 1 se encontraron esclerocios grandes, huecos y con micelio (como si hubieran germinado), localizados en el entretejido de la vaina. En la muestra 2 la mayoría de los tallos se encontraban sanos, hallándose pocos esclerocios pequeños y grandes entre tallo y vaina.


Muestras AER Colón

En las muestras 1 y 2 se encontraron más esclerocios pequeños que grandes, ubicados en su mayoría en la vaina. En las muestras 6 y 7 se encontró presencia de esclerocios pequeños entre vaina y tallo, conteniendo un 25 y 30% de la muestra esclerocios grandes germinados en el entretejido de la vaina, respectivamente. Las muestras restantes presentaban solamente esclerocios pequeños en su mayoría entre vaina y tallo.

En el análisis del relevamiento se observan diferencias entre una región y otra en cuanto al tipo de esclerocios que se manifiesta.

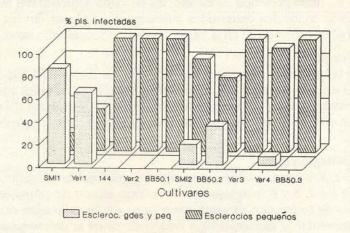

Se encontró muestras con presencia exclusiva de esclerocios pequeños, como las de AER Villaguay (Gráfico 1) y algunas de AER Colón (Gráfico 2).

Gráfico 1. Porcentaje de plantas atacadas con esclerocios grandes y pequeños y pequeños de las áreas correspondientes a AER Villaguay.

Escleracios pequeños

Gráfico 2. Porcentaje de plantas atacadas con esclerocios grandes y pequeños y pequeños de las áreas correspondientes a AER Colón.

En las muestras de AER Uruguay (Gráfico 3) y AER Gualeguaychú (Gráfico 4) se manifiesta un mayor porcentaje de plantas infectadas con esclerocios pequeños que con ambos tipos de esclerocios.

Gráfico 3. Porcentaje de plantas atacadas con esclerocios grandes y pequeños y pequeños de las áreas correspondientes a AER Uruguay.

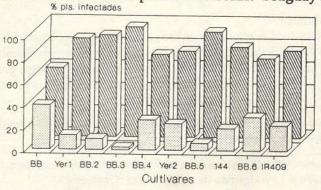
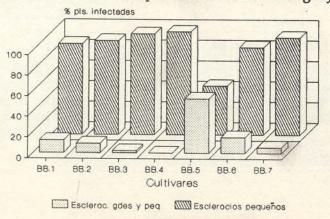
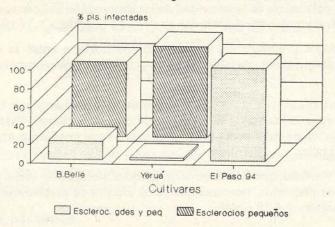




Gráfico 4. Porcentaje de plantas atacadas con esclerocios grandes y pequeños y pequeños de las áreas correspondientes a AER Gualeguaychú.

Sin embargo en las muestras de AER Concordia, los cultivares Blue Belle y Yeruá presentaron el mayor porcentaje de plantas con esclerocios pequeños, mientras que El Paso 94 demostró su total de plantas con esclerocios grandes y pequeños (Gráfico 5).

Gráfico 5: Porcentaje de plantas atacadas con esclerocios grandes y pequeños y pequeños de las áreas correspondientes a AER Concordia.

Otra información tomada en cuenta fue el antecedente de los lotes muestreados, en donde se destacan dos lotes de AER Gualeguaychú: Pehuajó Nº 1 que lleva dos años con cultivo de arroz, campaña 90/91 y 91/92 y Pehuajó Nº 2, que es el primer año en este tipo de explotación.

En Pehuajó N^0 1 las plantas muestreadas manifestaron un alto grado de putrefacción, presentando la mayoría esclerocios grandes y pequeños. En cambio en Pehuajó N^0 2 las plantas no denotaron las mismas características que el lote anterior y el total de las plantas muestreadas presentaron esclerocios pequeños.

Analizando el síntoma para cada cultivar a través de todas las zonas, resultaron con ataques severos (en tallos) los cultivares Yeruá, San Miguel, Blue Belle, El Paso 144, El Paso 94, Blue Bonnet 50, mientras que Colonia Mascías, IRGA 409, IRGA 410, Lebonnet manifestaron ataques leves (en vaina) (Cuadro 2).

Sin embargo es importante destacar que los cultivares no están representados con la misma frecuencia, lo cual introduce un sesgo en el muestreo.

Cuadro 2: Número de muestras con ataques en tallo y vaina.

Cultivar	Nº de Muestras con ataque severo en tallo	Nº de Muestras con ataque leve en vaina	Total
El Paso 144	1	2	3
El Paso 94	1		1
B.Belle	12	3	15
B.Bonnet 50	2	1	3
Lebonnet		1	1
Cnia. Mascías	1.00		1
IRGA 409		1	1
IRGA 410		1	1
Yeruá	5	4	9
San Miguel	3	HAR MASSI HENRY	3

Conclusiones

Este muestreo servirá como punto de partida para realizar un seguimiento de esta enfermedad en las sucesivas campañas. Los diferentes manejos que sufrirán los lotes muestreados permitirá asociar el efecto de las diferentes prácticas con la presencia del patógeno.

Los resultados del análisis de la severidad de los síntomas no indican necesariamente una resistencia genética, sino un mecanismo de escape y/o tolerancia.

Aunque son datos preliminares, se encontró coincidencia entre la presencia de esclerocios grandes y ataque severo de tallo. Los esclerocios pequeños acompañaban a vainas atacadas levemente.

Debido a la gran difusión de la enfermedad manifestada mediante este relevamiento, se hace necesario abordar la búsqueda de medidas de control eficiente. Para tal fin ya se comenzó con la evaluación de cultivares y líneas promisorias que puedan aportar resistencia a la podredumbre del tallo.

Es importante destacar que los esclerocios grandes siempre se presentaron acompañados de esclerocios pequeños, mientras que estos últimos se presentaron aislados en zonas como AER Villaguay y AER Colón.

CONTROL QUIMICO DE MALEZAS EN EL CULTIVO DE ARROZ (Oryza sativa)

Marchessini, Eduardo; Cattaneo, Fernando

Introducción

Durante la campaña 1991/92 se condujeron cinco ensayos orientados principalmente al control de malezas gramíneas tales como capín, pasto cuaresma y brachiaria, para lo cual se emplearon herbicidas graminicidas específicos.

Materiales y Métodos

Todos los ensayos se realizaron en un lote sembrado con el cultivar San Miguel, a máquina en líneas de 15 cm a razón de 200 kg/ha, el 14-11-91.

Suelo: Vertic haplaquept, contenido de materia orgánica 2.6%, pH: 6.2.

<u>Diseño Experimental</u>: bloques al azar con tres repeticiones. Tamaño de cada unidad experimental o parcela de 16 m² (8 x 2 m), ubicadas de a dos en piletones taipeados.

Siembra de capín: se efectuó simultáneamente con el arroz a razón de 2,5 kg/ha con las especies crus galli y crus pavonis para asegurar así su permanencia en el lugar.

Herbicidas utilizados:

Principio activo	Formula	Marca	Aplicación	
(nombre común)	conc.%	Comercial	maxielyez 2	
Fenozaprop-etil	LE 12.26	Furore	PoE	
Haloxyfop-metil	LE 7.5	Ballesta	PoE	
Quinclorac	PM 50	Facet	PS, PoE	
Oxadiazon	LE 38	Ronstar	PE, PoE	
Nicosulfuron	GD 75	Challenger	PoE	
Pendimetanil	LE 33	Herbadox	PE	
Propanil	LE 36.9 y FLO 42		PoE	
Picloram	LS 28.08	Tordon 24-k	PoE	

LE: Líquido emulsionable, LS: Líquido soluble, SA: Solución acuosa, PM: Polvo mojable, GD: gránulos dispersos. FLO: Floable, PS: Pre-siembra, PE: Pre-emergente, PoE: Post-emergente.

Equipos de aplicación:

- a. Aspersora logarítmica de mochila tipo Van Der Weij. Tanque de diluyente capacidad 2 litros; tanque de concentrado 1 litro; barra de aspersión con 8 picos; ancho de labor 2 metros. Presión de trabajo: 30 1/pvl².
- b. Aspersora de parcelas Weed-Systems, propulsión CO₂; provista de botalón con 4 picos con pastillas tipo; volúmen de agua equivalente a 160 l/ha.; abanico plano 8001 u 8002. Presión

de trabajo: 40 16/pvl2.

Riego definitivo: dentro de las 48 a 72 hs de las aplicaciones.

Sistema de aplicación: parcelas múltiples.

Estado de las especies al momento de la aplicación de los tratamientos:

Arroz: 3-5 hojitas

Capín: 3-5 hojitas a 2-4 macollos.

Efecto herbicida:

Se evaluó por el método de apreciación visual de control en base a la escala aprobada por a ALAM (Asociación Latinoamericana de Malezas), II Reunión en Cali, Colombia en 1974; la misma se transcribe a continuación:

Indice (%)	Denominación	Valor	
0-40	Ninguno a pobre	1	
41-60	Regular	2	
61-70	Suficiente	3	
71-80	Bueno	4	
81-90	Muy bueno	5	
91-100	Exelente	6	

Durante el ciclo del cultivo se efectuaron dos registros de control; el primero dentro del mes de la aplicación y el último antes de la cosecha.

Malezas presentes:

Gramíneas: Capín, Echinochloa colonum, E. crus galli, y E. crus pavonis.

Digitaria o pasto cuaresma, Digitaria sanguinalis.

Bracchiaria, Braccharia platyphylla.

ENSAYO 1

Objetivos

Aplicación preemergente del herbicida Quinclorac, comparativamente con Pendimetalin y Oxadiazon.

Materiales y Métodos

Los tratamientos y dosis aplicadas figuran en el cuadro de resultados.

Resultados

	Herbicida	Dosis/ha	Efecto Herbicida - Valor s/escala (promedio							
T	Ite. activo (i.a.)	PF	Aplic.	Az	Eco	Ecg	Ecp	Ds	Вр	Pd
1	Pendimetalin	51	PE		6	6	6	6	6	6
2	Oxadiazon	2,51	PE		6	6	6	6	6	6
3	Quinclorac	1 kg	PE		6	6	6	6	6	6
4	Quinclorac+Propanil	0.75 kg + 61	POE		6	6	6	6	6	6
5	Oxadiazon+Propanil	1,81+71	POE		3	4	4	4		5
6	Pendimetalin+Propanil	41+81	POE		5	5	5	5	6	6
7	Molinate+Propanil	41+71	POE		6	6	6	6	6	6
8	Propanil Testigo	91	POE		6	6	6	6	6	6

Az: Arroz. Eco: Echinochloa colonum. Ecg: Echinochloa crusgalli. Ecp: Echinochloa cruspavoni. Ds: Digitatia sanguinalis.

Bp: Brachiaria platyphylla. Pd: Paspalum distichum.

ENSAYO 2

Objetivos

Aplicación post-emergente del herbicida Quinclorac comparativamente con Pendimetalin y Oxadiazon, en mezclas con Propanil.

Materiales y Métodos

Los tratamientos y dosis aplicadas figuran en el cuadro de resultados.

Resultados

H	erbicida	Dosis I/ha		Efe	cto Her	bicida	- Valor	s/escal	la (pro	medio
T	Ite. activo (i.a.)	P F	Aplic.		Eco	Ecg	Ecp	Ds	Вр	Pd
1	Fenoxaprop	1	POE	CONTRACTOR OF	6	6	6	6	6	6
2	Fenoxaprop	1,25	POE		6	6	6	6	6	6
3	Fenoxaprop+Picloram*	1 + 0,2	POE		6	6	6	6	6	4
4	Fenoxaprop+Picloram*	1,25 + 0,2	POE		6	6	6	6	6	6
5	Fenoxaprop+Molinate	1 + 2,5	POE		6	6	6	6	6	5
6	Haloxifop	1	POE		4	6	6	6	6	6
7	Haloxifop	1,25	POE		6	6	6	6	6	6
8	Haloxifop+Picloram*	1 + 0,2	POE		6	6	6	6	6	6
9 10	Haloxifop+Picloram* Testigo	1,25 + 0,2	POE		6	6	6	6	6	6

^{*} Sal potásica.

Az: Arroz. Eco: Echinochloa colonum. Ecg: Echinochloa crusgalli. Ecp: Echinochloa cruspavoni. Ds: Digitatia sanguinalis. Bp: Brachiaria platyphylla. Pd: Paspalum distichum.

ENSAYO 3

Objetivos

Continuar con el seguimiento de los activos Fenoxaprop y Haloxyfop, solos y en mezclas con Picloram (sal potásica); éste último para control de malezas de hoja ancha.

Materiales Métodos

Los tratamientos y dosis aplicadas figuran en el cuadro de resultados.

Resultados

	Herbicida	Dosis I/ha		Efe	cto Her	bicida	- Valor	s/escal	a (pro	medio)
T	Ite. activo (i.a.)	PF	Aplic.		Eco	Ecg	Ecp -	Ds	Вр	Pd
1	d.m.							77		
2	d.m.+Fenoxaprop	1	POE		6	6	6	6	6	4
3	d.m.+Fenoxaprop	1,25	POE		6	6	6	6	6	6
4	e.m.+Haloxifop	1	POE		6	6	6	6	6	6
5	d.m.+Haloxifop	0,5 + 6	POE		2	2	2	2		1
6	Fluorocloridona+Molinate	0,5 + 6	POE		2	2	2	2		1
7	Fluorocloridona+Molinate	1+6	POE		4	4	4	4		1
8	Fluorocloridona+Molinate	2+6	POE		4	4	4	4		1
9	Testigo			9		6 × 0				

Az: Arroz. Eco: Echinochloa colonum. Ecg: Echinochloa crusgalli. Ecp: Echinochloa cruspavoni. Ds: Digitatia sanguinalis. Bp: Brachiaria platyphylla. Pd: Paspalum distichum.

ENSAYO 4

Objetivos

Ampliar el espectro de dosis del herbicida Nicosulfuron, post-emergente, promisoriamente en etapa experimental para control de malezas gramíneas.

Materiales y Métodos

Los tratamientos y dosis aplicadas figuran en el cuadro de resultados.

Resultados

Herbicida Dosis/ha Efecto Herbicida - Va						lor s/eso)			
Т	Ite. activo (i.a.)	PF	Aplic.	Az	Eco	Ecg	Ecp	Ds	Вр	Pd
1	Nicosulfuron	20 g	POE	A.E.P	6	6	6	6	6	6
2	Nicosulfuron	25 g	POE	A.E.P	6	6	6	6	6	6
3	Nicosulfuron	30 g	POE	A.E.P	6	6	6	6	6	6
4	Nicosulfuron	35 g	POE .	A.E.P	6	6	6	6	6	6
5	Nicosulfuron	40 g	POE	A.E.P	6	6	6	6	6	6
6	Nicosulfuron	50 g	POE	A.E.P	6	6	6	6	6	6
7	Propanil Flo	81	POE	s/e	1	1	1	1	1	1
8	Testigo							20		38

Az: Arroz. Eco: Echinochloa colonum. Ecg: Echinochloa crusgalli. Ecp: Echinochloa cruspavoni. Ds: Digitatia sanguinalis. Bp: Brachiaria platyphylla. Pd: Paspalum distichum.

Nicosulfuron (GD 75%) continuó mostrando excelente control de las malezas gramíneas presentes (100% en todas las dosis), provocando aún la muerte de plantas de capín y pasto cuaresma con bastante desarrollo, es decir, de más de 5 ó 6 macollos.

<u>Efecto sobre el cultivo</u>: Post-aplicación y durante el desarrollo del mismo no se observaron efectos fitotóxicos visibles, muy por el contrario las plantas se mostraban más vigorosas y de color verde más intenso; pero se observó atraso en la emergencia de las panojas (A.E.P) en 7 días aproximadamente, este efecto se acentúa a medida que se incrementan las

dosis, de esta manera cuando en las dosis de 20-30 g/ha se observaba un 25% de plantas panojadas, en las dosis mayores este estadío era aún 0%. De todas maneras las dosis promisorias de uso se hallarían dentro de los valores mencionados.

ENSAYO 5

Objetivos

Evaluar el efecto de la mezcla Fluorocloridona + Propanil.

Materiales y Métodos

Ensayo demostrativo de Control Químico con Herbicidas aplicados con aspersor logarítmico y dosis constantes. Los tratamientos y dosis aplicadas figuran en el cuadro de resultados.

Resultados

			Dosis		
Ensayo	T	Herbicida	inicial kg-l/ha	constante kg-l/ha	
ogarítmico	1	Fenoxaprop	1,5		
	2	Haloxyfop	1,5		
	3	Quinclorac	1		
	4	Quinclorac+Propanil	- + 10	0,8 + -	
	5	Nicosulfuron	0,025		
	6	Nicosulfuron	0,025	Several and a large	
	7	Nicosulfuron	0,025		
Dosis constantes	8	Fenoxaprop	120000000000000000000000000000000000000	1	
	9	Fenoxaprop	SE SERVE	1,250	
	10	Haloxyfop	27,000 19 8	1	
	11	Haloxyfop		1,250	
	12	Quinclorac		0,8	
	13	Quinclorac+Propanil		0,75 + 8	
	14	Nicosulfuron		0,010	
	15	Nicosulfuron		0,015	
	16	Nicosulfuron		0,017	
	17	Nicosulfuron	Test Trained	0,020	

El herbicida Quinclorac fue aplicado con el coadyuvante Plurafac (1 l/ha), y el Nicosulfuron con Cittowet al 0,3%.

Este ensayo, en parcelas de 100 m² (50 x 2 m), posterior a los tratamientos no se lo inundó, pues como su título lo indica, sólo tuvo por objeto mostrar a técnicos y productores el efecto de los distintos herbicidas aplicados, como así también los equipos de aplicación en cada caso: aspersor logarítmico tipo Van Der Weit y de dosis constantes Weed Systems.

Los resultados de control fueron coincidentes con los obtenidos en los ensayos anteriores.

Conclusiones

Las malezas gramíneas presentes en el lugar, sobre las cuales se realizaron los ensayos de control fueron: capín, Echinochloa colonum, Echinochloa crus galli y Echinochloa crus pavonis; Pasto cuaresma, Digitaria sanguinalis; Brachiaria, Brachiaria platyphylla; Gramilla dulce, Paspalum distichum.

Los tratamientos herbicidas cuyos resultados de control fueron de muy buenos a excelentes (según escala de evaluación), se listan a continuación:

Herbicida(p.a.)	D	osis/h	a	Aplicación
	kg		1	
Pendimetalin			5	PE
Oxadiazon			2,5	PE
Quinclorac	1 - 0,8			PE
Quinclorac+Propanil	0,75	+	6	POE
	0,75	+	8	POE
Pendimetalin+Propanil			4 + 8	POE
Molinate+Propanil			4+7	POE
Propanil			9	POE
Fenoxaprop			1 - 1,25	POE
Fenoxaprop+Molinate			1 + 2,5	POE
Fenoxaprop+Picloram (sal-k)		1	-1,25+0,2	POE
Haloxyfop			1 - 1,25	POE
Haloxyfop+Picloram (sal-k)		1	-1,25+0,2	POE
Nicosulfuron	0,02 - 0,03			POE

PE: Pre-emergente POE: Post-emergente.

Comentario Final

Quinclorac: 0,8 kg/ha solo, bastó para eliminar las malezas gramíneas presentes. Este resultado indicaría que el tratamiento mezclado con Propanil (6 u 8 l/ha), no tendría ventajas comparativas y aumentaría el costo.

Fenoxaprop y Haloxyfop: 1-1,25 l/ha mezclados con Picloram (sal-k), 0,2 l/ha, una vez más no se observó que alteraran su eficacia como graminicidas.

Nicosulfuron: Si bien continuó mostrándose como muy buen graminicida, en la presente campaña provocó retraso en el panojamiento del cultivo en 7 días, restando por medir si dicho efecto puede incidir sobre los rendimientos.

En el resto de los tratamientos no se observaron efectos de fitotoxicidad hacia el cultivo.

La mezcla de los herbicidas Fluorocloridona + Molinate, y la formulación Floable (Flo) de Propanil, mostraron muy pobre control de las malezas gramíneas anotadas, en las condiciones en que se realizaron los ensayos.

Comisión Pro-Mejoramiento del Cultivo de Arroz

APA Asociación Plantadores

de Arroz

AIANER Asociación de Ingenieros

Agrónomos del Nordeste

de Entre Ríos

CIALA Cámara de Industriales

Arroceros del Litoral Argentino

FECOAR Federación de

Cooperativas Arroceras

INTA Instituto Nacional de

Tecnología Agropecuaria